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Abstract

We propose a new framework for evaluating predictive densities in an environment where

the estimation error of the parameters used to construct the densities is preserved asymp-

totically under the null hypothesis. The tests offer a simple way to evaluate the correct

specification of predictive densities, where both the model specification and its estimation

technique are evaluated jointly. Monte Carlo simulation results indicate that our tests are

well sized and have good power in detecting misspecification. An empirical application

to density forecasts of the Survey of Professional Forecasters shows the usefulness of our

methodology.
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1 Introduction

Policy institutions are becoming interested in complementing point forecasts with an accurate

description of uncertainty. For instance, they are interested not only in knowing whether

inflation is below its target, but also in understanding whether the realized inflation rate was

forecasted to be a low probability event ex-ante. In fact, if researchers underestimate the

uncertainty around point forecasts, it is possible that an event with a fairly high likelihood

of occurrence is forecasted to be a very low probability event. An accurate description of

uncertainty is therefore important in the decision making process of economic agents and

policymakers. The interest in density forecasting has emerged in the survey by Elliott and

Timmermann (2008) as well as in their recent book (Elliott and Timmermann, 2016), and

has inspired several empirical contributions that have proposed new approaches to improve

the forecasting performance of predictive densities, e.g. Aastveit, Foroni and Ravazzolo

(2017), Ravazzolo and Vahey (2014) and Billio, Casarin, Ravazzolo and van Dijk (2013).

The objective of this paper is to provide reliable tools for evaluating whether the uncertainty

around point forecasts, and predictive densities in general, are correctly specified.

Many central banks periodically report fan charts to evaluate and communicate the un-

certainty around point forecasts (e.g., see the various issues of the Bank of England Inflation

Report or the Economic Bulletin of the Bank of Italy).3 Fan charts provide percentiles of

the forecast distribution for macroeconomic variables of interest. Typically, central banks’

fan charts are the result of convoluted methodologies that involve a variety of models and

subjective assessments, although fan charts can be based on specific models as well.4 Fig-

ure 1 plots fan charts for US output growth (left panel) and the Federal Funds rate (right

panel) based on a representative macroeconomic model by Smets and Wouters (2007) widely

used in academia and policymaking.5 The fan charts display model-based forecasts made

in 2000:IV for the next four quarters. The shaded areas in the figures depict the deciles

of the forecast distribution and provide a visual impression of the uncertainty around the

point forecasts (in this case, the median, marked by a solid line). Over the four quarterly

horizons, uncertainty about output growth and interest rate forecasts has a very different

pattern: the uncertainty surrounding output growth forecasts is constant across horizons,

3These publications are available at https://www.bankofengland.co.uk/news/publications and

https://www.bancaditalia.it/pubblicazioni, respectively.
4See for instance Clements (2004) for a discussion on the Bank of England fan charts.
5For a discussion on the forecasting ability of DSGE models, see Edge and Gürkaynak (2010), Edge, Kiley

and Laforte (2010) and Gurkaynak et al. (2013).
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while it depends on the horizon for interest rates. The dark, dash-dotted line in the figures

plots the actual realized value of the target variable. Clearly, forecasts of interest rates are

very imprecise (the realization is outside every forecast decile except for one-quarter-ahead

horizon), whereas the model predicts output growth more accurately. Evaluating model-

based forecast distributions amounts to understanding whether the model’s description of

uncertainty was inaccurate or whether the realized values were indeed low probability events.

INSERT FIGURE 1 HERE

The methodologies that are currently available test whether the empirical distribution

belongs to a given parametric density family with parameters evaluated at their pseudo-true

values. Our paper derives new tools to evaluate whether predictive densities are correctly

specified by focusing on evaluating their actual forecasting ability at models’ estimated

parameter values, which, we argue, is more empirically useful to measure models’ actual

forecasting ability in finite samples. In other words, we test whether the predictive densities

are correctly specified given the parametric model and the estimation technique specified by

the researcher. Accordingly, our tests do not require an asymptotic correction for parameter

estimation error. Furthermore, our null hypothesis is that of correct specification of the

density forecast, which, as we clarify in an example, can still hold even if the forecasting

model is dynamically misspecified. Thus, even in the presence of dynamic misspecification,

we obtain limiting distributions that are nuisance parameter free for one-step-ahead density

forecasts. However, we also extend our framework to multiple-step-ahead forecasts, where

the asymptotic distribution of our proposed tests is not nuisance parameter free.

Our approach, where parameter estimation error is maintained under the null hypothesis,

is inspired by Amisano and Giacomini (2007). However, our approach is very different, as the

latter focus on model selection by comparing the relative performance of competing models’

predictive densities, whereas we focus on evaluating the absolute performance of a model’s

predictive density. Maintaining parameter estimation error under the null hypothesis has two

advantages: (i) there is no need to correct the asymptotic distribution of the test statistics

for parameter estimation error; and (ii) the asymptotic distribution of the test statistics is

nuisance parameter free even when the model is dynamically misspecified.6 We derive our

tests within the class of Kolmogorov-Smirnov and Cramér-von Mises-type tests commonly

6Note that (i) is not unique to cases where parameter estimation error is maintained under the null

hypothesis; in fact, it also holds when parameter estimation error is asymptotically irrelevant, or when one

uses martingalization techniques, as in Bai (2003).
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used in the literature and show that our proposed tests have good size properties in small

samples.

There are several existing approaches for testing the correct specification of a parametric

density in-sample (e.g. Bai, 2003, Hong and Li, 2005, Corradi and Swanson, 2006a).7 Our

paper focuses instead on the out-of-sample evaluation of predictive densities. The difference

between in-sample and out-of-sample evaluation is that a model may fit well in-sample, and

yet its out-of-sample forecasts may be poor (for example, if the distribution of the error

changes between the in-sample estimation period and the out-of-sample evaluation period,

or if the researcher overfitted the relevant distributional parameters). As such, our paper

is related to a series of contributions which test whether observed realizations could have

been generated by a given predictive distribution. Diebold et al. (1998, 1999) introduced

the probability integral transform (PIT) into economics as a tool to test whether the em-

pirical predictive distribution of surveys or empirical models matches the true, unobserved

distribution that generates the data. Their approach tests for properties of the PITs, such

as independence and uniformity, by treating the forecasts as primitive data, that is without

correcting for estimation uncertainty associated with those forecasts.

Additional approaches proposed in the literature for assessing the correct calibration of

predictive densities are the likelihood ratio test by Berkowitz (2001), the non-parametric

approach by Hong, Li and Zhao (2007), the bootstrap introduced by Corradi and Swanson

(2006b,c), the raw-moment-based test by Knueppel (2015) and the graphical devices provided

by González-Rivera and Sun (2015).8 The null hypothesis in Hong, Li and Zhao (2007) and

Corradi and Swanson (2006b,c) is that of correct specification of the density forecast at the

pseudo-true (limiting) parameter values. Although this framework enables predictive density

evaluation when the models are dynamically misspecified, it does not necessarily capture the

actual measure of predictive ability that researchers are interested in, as in small samples the

pseudo-true parameter values may not be representative of the actual predictive ability of

the regressors. In the approach we propose, the main test statistic is the same as Corradi and

Swanson’s (2006b) one, although the null hypothesis is very different: it evaluates density

forecasts at the estimated parameter values (as opposed to their population values). Thus,

7See also Bai and Ng (2005) and Bontemps and Meddahi (2012) for in-sample tests of distributional

assumptions.
8Hong, Li and Zhao (2007) provide an out-of-sample counterpart of the Hong and Li (2005) in-sample

tests, while Corradi and Swanson (2006b) generalize the in-sample test by Corradi and Swanson (2006a) to

an out-of-sample framework.
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our approach is complementary to theirs. Furthermore, since the null hypothesis is different,

we cannot directly compare our tests to theirs. Berkowitz (2001) proposes a test based on

the Inverse Normal transformation of the PITs. Knueppel (2015), instead, tests the correct

calibration of multi-step-ahead density forecasts using raw moments, that is, by testing

whether selected moments of the PITs, for instance, are the same as the corresponding

moments of a uniform distribution. Both Berkowitz (2001) and Knueppel (2015) abstract

from parameter estimation error.9 In Corollaries 5 and 6, we formally discuss the likelihood

ratio and the raw-moments-based tests in our framework.

There are several differences between tests based on raw moments (such as Knueppel,

2015) and ours. On the one hand, it is important to note that raw-moments-based tests

evaluate correct specification using a finite number of moments, while our approach directly

tests the correct specification of the whole distribution of the PITs. Therefore, Knueppel’s

(2015) test has power to detect misspecification only if it includes the moments that capture

misspecification, but would not have power if the misspecification affects moments that are

not included. One of the drawbacks of Knueppel’s (2015) test, then, is that it requires the

researcher to choose which moments to test and it is unclear how to select the number of

moments to test. Our approach, instead, is equivalent to testing the correct calibration of the

whole distribution, which corresponds to testing the correct specification of all the moments

and does not suffer from this drawback. On the other hand, the fact that Knueppel’s (2015)

test relies on a finite number of moments gives it two advantages: first, since the inclusion

of additional, correctly-specified, moments comes with the cost of a power loss, it may have

more power than our tests if the misspecification is fully captured by a few moments only

and the researcher has chosen to test exactly those moments; second, in the case of serial

correlation, Knueppel’s (2015) test relies on a small number of moments whose covariance

can be consistently and precisely estimated using a HAC estimator, while in our case the

covariance matrix is large dimensional and hence we recommend a bootstrap for a more

precise and robust inference.

The alternative approach recently proposed by González-Rivera et al. (2011), González-

Rivera and Yoldas (2012), González-Rivera and Sun (2015) uses graphical devices to im-

plement a test of correct specification. Their proposed methods work when models are

dynamically correctly specified; however, when parameter estimation error is asymptotically

relevant, the asymptotic distribution is not nuisance parameter free and a bootstrap proce-

9Knueppel (2015) conjectures that our framework can be applied to his approach. We formally show

under which assumptions his conjecture is valid.
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dure is proposed. Our tests, instead, do not require a bootstrap procedure for one-step-ahead

predictive densities, and its critical values are readily available.

To summarize, for one-step-ahead predictive densities, the critical values of our test

statistics can be tabulated. For multiple-step-ahead forecasts, the PITs are potentially

serially correlated; in the latter case, we recommend to obtain the critical values of our

test statistics via a block version of the weighted bootstrap proposed by Inoue (2001). An

alternative would be to obtain the critical values via Monte Carlo simulations using a HAC

covariance estimate, but the performance is sensitive to the choice of the truncation lag and

the correlation properties in the data, and thus it could perform poorly in practice. Even

though we implement a bootstrap to obtain the critical values, our bootstrap is very different

from Corradi and Swanson (2006a). To highlight the theoretical differences between the null

hypothesis in our framework and Corradi and Swanson’s (2006a), note that the variance in

the limiting distribution of the test statistic in Corradi and Swanson (2006a) includes the

contribution of parameter estimation error to the variance. Our proposed weighted block

bootstrap is different from that in Corradi and Swanson (2006a) since it resamples the PITs

and not the data, and does not require knowledge or replication of the model estimation

technique. Moreover, as previously noted, critical values are readily available for one-step-

ahead predictive densities, and a bootstrap procedure is only needed when evaluating multi-

step predictive densities.

To illustrate the empirical relevance of our proposed tests, we evaluate density forecasts

in the Survey of Professional Forecasters (SPF). It is very interesting to evaluate the SPF

density forecasts using our tests because SPF panelists use a combination of estimated models

and expert judgment to produce forecasts, even though the models are not disclosed. Thus,

in the SPF density forecast case, as well as in most central banks’ fan charts, there is

parameter estimation error, and it is impossible to correct for it: the only feasible approach

is to maintain it under the null hypothesis. This example illustrates the empirical usefulness

of our tests, since this approach is exactly what we follow in our paper. In fact, we find that

predictive densities are, in general, misspecified. In addition, we propose ways to improve

the calibration of the densities given the results of our tests.

The remainder of the paper is organized as follows. Section 2 introduces the notation

and definitions, and Section 3 discusses issues related to the practical applicability of our

test as well as our theoretical approach. In Section 4, we provide Monte Carlo evidence on

the performance of our tests in small samples. Section 5 analyzes the empirical applications

to SPF density forecasts, and Section 6 concludes.
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2 Notation and Definitions

We first introduce the notation and discuss the assumptions about the data, the models and

the estimation procedure. Consider a stochastic process {Zt : Ω → Rk+1}Tt=1 defined on a
complete probability space (Ω,F , P ). The observed vector Zt is partitioned as Zt = (yt, X

′
t)
′,

where yt : Ω → R is the variable of interest and Xt : Ω → Rk is a vector of predictors.
Let 1 ≤ h < ∞.10 We are interested in the true, but unknown, h−step-ahead conditional
predictive density for the scalar variable yt+h based on Ft = σ(Z ′1, ..., Z

′
t)
′, which is the true

information set available at time t. We denote this density by φ0 (.).11

We assume that the researcher has divided the available sample of size T + h into an in-

sample portion of size R and an out-of-sample portion of size P and obtained a sequence of h-

step-ahead out-of-sample density forecasts of the variable of interest yt using the information

set =t, such that R + P − 1 + h = T + h and =t ⊆ Ft. Note that this implies that the
researcher observes a subset of the true information set. We also let =tt−R+1 denote the
truncated information set between time (t−R + 1) and time t used by the researcher.

Let the sequence of P out-of-sample estimates of conditional predictive densities evalu-

ated at the ex-post realizations be denoted by
{
φt+h

(
yt+h|=tt−R+1

)}T
t=R
. The dependence

on the information set is a result of the assumptions we impose on the in-sample parameter

estimates, θ̂t,R. We assume that the parameters are re-estimated at each t = R, ..., T over

a window of R data indexed from t − R + 1 to t (rolling scheme).12 In this paper we are

concerned with direct multi-step forecasting, where the predictors are lagged h periods. In

addition to being parametric (such as a Normal distribution), the distribution φt+h (.) can

also be non-parametric (as in the empirical application in this paper).

Consider the probability integral transform (PIT), which is the cumulative density func-

tion (CDF) corresponding to φt+h (.) evaluated at the realized value yt+h:

10Note that our framework allows nowcast densities, which technically corresponds to h = 0. We do not

make this explicit in the notation to avoid misleading the reader to thinking that our tests are in-sample.
11The true conditional predictive density may depend on the forecast horizon. To simplify notation, we

omit this dependence without loss of generality given that the forecast horizon is fixed. Furthermore, we use

the symbols φ0(.) and φt(.) to denote generic distributions and not necessarily a normal distribution.
12The choice of the estimation scheme (rolling versus recursive) depends on the features of the data: in the

presence of breaks, one would favor a rolling scheme that allows a fast update of the parameter estimates,

at the cost of a potential increase in estimation uncertainty relative to a recursive scheme when there are no

breaks. As discussed in Giacomini and White (2006), our proposed approach is also valid for other classes

of limited memory estimators.
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zt+h =

∫ yt+h

−∞
φt+h

(
y|=tt−R+1

)
dy ≡ Φt+h

(
yt+h|=tt−R+1

)
.

Let us also denote the empirical cumulative probability distribution function of the PIT by

ϕP (r) ≡ P−1
T∑
t=R

1
{

Φt+h

(
yt+h|=tt−R+1

)
≤ r
}
. (1)

Further, let

ξt+h (r) ≡
(
1
{

Φt+h

(
yt+h|=tt−R+1

)
≤ r
}
− r
)
,

where 1 {.} is the indicator function and r ∈ [0, 1]. Consider Ψ (r) = Pr {zt+h ≤ r} − r and
its (rescaled) out-of-sample counterpart:

ΨP (r) ≡ P−1/2
T∑
t=R

ξt+h (r) . (2)

3 Asymptotic Tests of Correct Specification

This section presents our proposed test for the case of one-step-ahead forecasts. In this

case, our tests have an asymptotic distribution that is free of nuisance parameters and the

critical values can be tabulated. We further generalize the tests to the presence of serial

correlation, which applies to the case of multi-step-ahead density forecasts. In this case the

asymptotic distribution is not nuisance parameter free, and we discuss how to calculate the

critical values. All the proofs are relegated to Appendix A.

In order to maintain parameter estimation error under the null hypothesis, we state our

null hypothesis in terms of a truncated information set, which expresses the dependence of

the predictive density on estimated parameter values (as in Amisano and Giacomini, 2007).

We focus on testing φt+h
(
y|=tt−R+1

)
= φ0 (y|Ft), that is:

H0 : Φt+h

(
y|=tt−R+1

)
= Φ0 (y|Ft) for all t = R, ..., T, (3)

where Φ0 (y|Ft) ≡ Pr (yt+h ≤ y|Ft) denotes the distribution specified under the null hypoth-
esis.13 The alternative hypothesis, HA, is the negation of H0. Note that the null hypothesis

13Note that the null hypothesis depends on R. In other words, the null hypothesis jointly tests density

functional form and estimation technique. It might be possible that correct specification is rejected for

a model for some values of R and not rejected for the same model for some other choices of R. This is

reasonable since we are evaluating the model’s performance when estimated with a given sample size, so
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evaluates the correct specification of the density forecast of a model estimated with a given

window size, R, as well as the parameter estimation method chosen by the researcher.

We are interested in the test statistics:

κP = sup
r∈[0,1]

|ΨP (r) |, (4)

CP =
∫ 1
0

ΨP (r)2 dr. (5)

The κP test statistic is the same as the V1T test statistic considered by Corradi and

Swanson (2006a) when applied to predictive densities (formalized in Corradi and Swanson,

2006b). Note, however, that we derive the asymptotic distribution of the test statistic under

a different null hypothesis. Corradi and Swanson (2006b) focus on the null hypothesis:

HCS
0 : Φt+h(y|=t) = Φ0(y|=t, θ†) for some pseudo-true parameter value θ† ∈ Θ, where Θ is

the parameter space. That is, the latter test the hypothesis of correct specification of the

predictive density at the pseudo-true parameter value. Thus, the limiting distribution of

their test reflects parameter estimation error and, therefore, is not nuisance parameter free.

Note that we cannot compare our test with Corradi and Swanson (2006b) since they focus

on a different null hypothesis where R tends to infinity, while the theory of our test relies

on R being finite. In fact, given that the null hypotheses are different, power in our context

corresponds to size in theirs; thus comparisons are not informative.

Under our null hypothesis (eq. 3) instead, the limiting distribution of the test statistic is

nuisance parameter free. The reason is that we maintain parameter estimation error under

the null hypothesis, which implies that the asymptotic distribution of the test does not

require a delta-method approximation around the pseudo-true parameter value.

To clarify our null hypothesis, we provide a few examples.

Example 1: As a simple example, consider yt+1 = ct+1 + xt + εt+1, εt+1 ∼ iid N(0, 1),

where iid means independent and identically distributed, xt ∼ iid N(0, 1), t = 1, ..., T and

εt+1, xt are independent of each other. We assume, for simplicity, that the variance of the

errors is known. The researcher instead considers a model yt+1 = βxt + et+1, et+1 ∼ iid

N(0, 1). Moreover, the researcher is re-estimating the coeffi cient β with a window of size R

at each point in time t. Let β̂t,R denote the parameter estimated at time t using the most

recent R observations. We set ct+1 such that our null hypothesis (eq. 3) holds. That is, the

the estimation error is important under the null hypothesis. Alternatively, one could construct a test that

is robust to the choice of the estimation window size as suggested in Inoue and Rossi (2012) and references

therein.
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estimated PIT is: ∫ yt+1

−∞
φt+1

(
y|=tt−R+1

)
dy,

where φt+1
(
y|=tt−R+1

)
is N

(
β̂t,Rxt, 1

)
, whereas the PIT of the true data generating process

(DGP) is: ∫ yt+1

−∞
φt+1 (y|Ft) dy,

where φt+1 (y|Ft) is N (ct+1 + xt, 1). Under the assumption that the variance is known, a

suffi cient condition for the null hypothesis to hold is that the conditional means from true

DGP and the estimated model are the same. More in detail, the null hypothesis is imposed

by assuming:

ct+1 + xt = β̂t,Rxt,

that is,14

ct+1 =


R−1

t∑
j=t−R+1

xj−1yj

R−1
t∑

j=t−R+1
x2j−1

− 1

xt.

Thus, the null hypothesis in eq. (3) is not the correct specification of the forecasting model

evaluated at the true parameter values (relative to the data generating process); rather, the

null hypothesis in eq. (3) is the correct specification of the forecasting model evaluated at the

parameter values obtained conditional on the estimation procedure. We argue that the latter

is an appropriate approach to evaluate the correct specification of density forecasts, since it

jointly evaluates the proposed model and its estimation technique, including the estimation

window size. The methodology only requires that the conditional mean is estimated based

on a finite number of observations.15

Suppose, instead, the true data generating process is: yt+1 = c + xt + εt+1 where xt ∼
iidχ21, εt+1 ∼ iidN(0, 1), and they are mutually independent. Let the researcher estimate

a misspecified model that includes only a constant, treating the forecast distribution as

Normal. Note that the null hypothesis does not hold even if the error term is Normal, since

14The data under the null hypothesis are mixing, and thus satisfy our Assumption 1, for the following

reason: let gt+1 ≡ (xt, ct+1, εt+1)
′. Since E (gt+1) = 0 and E (gt+1|gt,gt−1, ...) = 0, then gt+1 is a martingale

difference sequence and has finite variance, thus it is white noise (Hayashi, 2000, p. 104).
15The results in this paper also carry over to the fixed-estimation scheme, where the conditioning infor-

mation set is =R1 , or to any other information set based on a bounded number of observations R, provided
R is finite.
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the misspecification results in an actual error term that is a combination of xt and εt+1.

Thus, since the data is generated as a mixture of a Chi-squared and Normal distribution,

and we are testing whether it is a Normal, the null hypothesis does not hold.

Example 2: Consider yt+1 = σt+1εt+1, εt+1 ∼ iid N(0, 1) and σ2t = ρ1σ
2
t−1 + ρ0,t. This

is a GARCH(1,0) process for yt+1, where the mean is assumed to be known and equal to

zero for simplicity. The researcher instead estimates the model: yt+1 = γet+1, et+1 ∼ iid

N(0, 1), where the coeffi cient γ is estimated using observations in a window of size R: γ̂t =

R−1
∑t

j=t−R+1 y
2
j . That is, the estimated PIT is:∫ yt+1

−∞
φt+1

(
y|=tt−R+1

)
dy,

where φt+1
(
y|=tt−R+1

)
is N (0, γ̂t), whereas the PIT of the true data generating process

(DGP) is: ∫ yt+1

−∞
φt+1 (y|Ft) dy,

where φt+1 (y|Ft) is N
(
0, σ2t+1

)
.

We set ρ0,t such that our null hypothesis (eq. 3) holds. The estimated PIT and the PIT

that generated the data are the same if σ2t+1 = γ̂t. Thus, the null hypothesis is imposed by

assuming:

σ2t+1 = R−1
t∑

j=t−R+1
y2j = R−1

t∑
j=t−R+1

(
ρ1σ

2
j−1 + ρ0,j

)2
ε2j ,

where σ2t+1 = ρ1σ
2
t + ρ0,t+1 and

ρ0,t+1 = R−1
t∑

j=t−R+1
y2j − ρ1σ2t = R−1

t∑
j=t−R+1

(
ρ1σ

2
j−1 + ρ0,j

)2
ε2j − ρ1σ2t .

Example 3: As an example of a dynamically misspecified model where the null hy-

pothesis in eq. (3) holds, consider yt+1 = ct+1 + ρyt + εt+1, εt+1 ∼ iid N(0, 1). We assume,

for simplicity, that the variance of the errors is known. The researcher, instead, considers

a model yt+1 = β + et+1, et+1 ∼ iid N(0, 1). Moreover, the researcher is estimating the

coeffi cient β using observations in a window of size R. That is, the estimated PIT is:∫ yt+1

−∞
φt+1

(
y|=tt−R+1

)
dy,

where φt+1
(
y|=tt−R+1

)
is N

(
β̂t,R, 1

)
, where β̂t,R = R−1

∑t
j=t−R+1 yj, whereas the PIT of the

true DGP is: ∫ yt+1

−∞
φ0 (y|Ft) dy,

11



where φ0 (y|Ft) is N (ct+1 + ρyt, 1). Under the assumption that the variance is known, a

suffi cient condition for the null hypothesis to hold is that the conditional means from the

true DGP and the estimated model are the same. More in detail, the null hypothesis is

imposed by assuming:

ct+1 + ρyt = β̂t,R,

that is,

ct+1 =

(
R−1

t∑
j=t−R+1

yj − ρyt

)
.

It is important to note that R is finite; thus R−1
∑t

j=t−R+1 yj is a mixing process since it

is a measurable function of a finite number of lags of mixing random variables. In summary,

in this case, even if the forecasting model is misspecified relative to the data generating

process, the null hypothesis in eq. (3), which aims to evaluate correct specification of the

model and the forecasting technique jointly, holds.

3.1 One-step-ahead Density Forecasts

This sub-section presents results for the case of one-step-ahead forecasts; the next sub-section

generalizes the tests to the presence of serial correlation. Let h = 1. First, we derive the

asymptotic distribution of ΨP (r) for one-step-ahead density forecasts under Assumption 1.16

Assumption 1.

(i)
{
Zt = (yt, X

′
t)
′}T
t=R

is strong mixing with mixing coeffi cients α (m) of size −δ, where
δ > 3 (4 + γ) /γ;

(ii) Φ0 (yt+h|Ft) is differentiable and has a well-defined inverse;
(iii) Fd (., .) and F (.) are respectively the joint and the marginal distribution functions

of the random variable Φ0 (yt+h|Ft), i.e. Pr (Φ0 (yt+h|Ft) ≤ r1,Φ0 (yt+h+d|Ft+d) ≤ r2) =

Fd (r1, r2), Pr (Φ0 (yt+h|Ft) ≤ r) = F (r), and F (r) is continuous;

(iv) R <∞ as P, T →∞.

Assumption 1(i) allows for short memory and heterogeneous data. The assumption how-

ever limits the dependence in the data so that, as in Giacomini and White (2006), one can

16Note that if P/R → 0, our test would be the same as the existing tests as parameter estimation

uncertainty becomes irrelevant in those cases (see Corradi and Swanson, 2006b). This result would hold

even for recursive estimation schemes as long as P/R→ 0. However, we test a different null hypothesis than

the existing tests and we do not allow either R→∞ or P/R→ 0 in our framework.
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use results on functions of mixing variables which allow for mild non-stationarity induced by

changes in distributions over time, yet rule out I(1) processes. Assumption 1(ii) and 1(iii)

are similar to Assumption B in Inoue (2001); assumption (iii) is trivially satisfied under our

null hypothesis since, as we will show, the PITs are uniformly distributed under the null hy-

pothesis. These assumptions require the PITs, as well as the marginal and joint distributions

of the PITs, to be well-defined.17 Assumption 1(iv) requires the estimation window size to

be finite as the total sample size grows. Our assumptions allow for quite general parametric

models (including linear and nonlinear models) and estimation methods (including GMM

and MLE), as long as the estimation window size is finite and data are mixing. Note that

the parameters of the model do not need to be consistently estimated as long as assumptions

1(i) and 1(iv) hold. Furthermore, note that the assumption potentially allows forecasts to

be conditioned on a finite set of future values of some variables of interest (i.e. “conditional

forecasts”).

Correct specification is characterized by Assumption 2:

Assumption 2.

yt+h|=tt−R+1 ≡ yt+h|Ft for all t = R, ..., T, where ≡ denotes equality in distribution.

We show the following result:

Theorem 1 (Asymptotic Distribution of ΨP (r)) Under Assumptions 1, 2, and H0 in

eq. (3): (i) zt+h is iid U (0, 1) , t = R, ..., T ; (ii) ΨP (r) weakly converges (⇒) to the
Gaussian process Ψ (.), with mean zero and auto-covariance function E [Ψ (r1) Ψ (r2)] =

[inf (r1, r2)− r1r2] .

The result in Theorem 1 allows us to derive the asymptotic distribution of the test statis-

tics of interest, presented in Theorem 2. The latter shows that the asymptotic distributions

of our proposed test statistics have the appealing feature of being nuisance parameter free.

Note that the asymptotic distribution is a Brownian Bridge (see Durbin, 1973).

Theorem 2 (Correct Specification Tests) Under Assumptions 1, 2 and H0 in eq. (3):

κP ≡ sup
r∈[0,1]

|ΨP (r) | ⇒ sup
r∈[0,1]

|Ψ (r) |, (6)

17The assumption is on the unobserved true distribution, though under the null it also applies to the

proposed distribution.
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and

CP ≡
∫ 1
0

ΨP (r)2 dr ⇒
∫ 1
0

Ψ (r)2 dr. (7)

The tests reject H0 at the α ·100% significance level if κP > κα and CP > Cα. Critical values

for α = 0.10, 0.05 and 0.01 are provided in Table 1, Panel A.

INSERT TABLE 1 HERE

Note that one could be interested in testing correct specification in specific parts of the

distribution.18 For example, one might be interested in the tails of the distribution, which

correspond to outliers, such as the left tail, where r ∈ [0, 0.25), or the right tail, where

r ∈ [0.75, 1), or both: r ∈ {[0, 0.25] ∪ [0.75, 1]}. Alternatively, one might be interested in the
central part of the distribution, for example r ∈ [0.25, 0.75]. We provide critical values for

these interesting cases in Table 1, Panel B.

Note also that our κP test has a graphical interpretation. In fact, from eqs. (1) and (2),

P−1/2ΨP (r) ≡ P−1
T∑
t=R

(
1
{

Φt+h

(
yt+h|=tt−R+1

)
≤ r
}
− r
)

= ϕP (r)− r.

Thus,

α ≡ Pr

{
sup
r∈[0,1]

|ΨP (r)| > κα

}
≈ Pr

{
sup
r∈[0,1]

|ϕP (r)− r| > κα/
√
P

}
.

This suggests the following implementation: plot the empirical cumulative distribution func-

tion of the PIT, eq. (1), together with the cumulative distribution function of the Uniform

(0,1) distribution, r (the 45-degree line), and the critical value lines: r± κα/
√
P . Then, the

κP test rejects if the cumulative distribution function of the PIT is outside the critical value

bands.

We consider two ways of simulating the critical values. One approach, which is what

we report in Table 1, relies on simulating the limiting distribution of ΨP (r), considered in

Theorem 1, directly. More specifically,

(i) Discretize the grid for r. In particular, we consider the grid: r = [0 : 0.001 : 1];

(ii) Calculate the theoretical variance E [Ψ (r1) Ψ (r2)] = [inf (r1, r2)− r1r2] , for r1, r2 ∈
[0 : 0.001 : 1];

18See Franses and van Dijk (2003), Amisano and Giacomini (2007) and Diks, Panchenkob and van Dijk

(2011) for a similar idea in the context of point and density forecast comparisons.
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(iii) Draw independent multivariate Normal random variables based on the Cholesky

decomposition of the estimated covariance matrix E [Ψ (r1) Ψ (r2)] calculated in (ii);19

(iv) Construct the test statistics proposed in Theorem 2;

(v) Repeat the steps (iii) and (iv) for a large number of Monte Carlo replications; report

the 90%, 95% and 99% percentiles of the simulated limiting distribution as critical values.

The second approach aims at obtaining exact critical values in finite samples. We do so

by the following procedure:

(i) Draw P independent random variables from the Uniform (0,1) distribution;

(ii) For a given sample of size P , construct the ΨP (r) as in eq. (2);

(iii) Construct the test statistics proposed in Theorem 2;

(iv) Repeat steps (i) to (iii) for a large number of Monte Carlo replications; the 90%,

95% and 99% percentile values of the simulated limiting distribution are the critical values.

The second approach has the advantage that we can tailor the critical values to the

sample sizes used in an empirical application. However, it has the disadvantage that the

critical values need to be simulated for each empirical application. As we show later in a

Monte Carlo size experiment (presented in Table 2), the finite-sample critical values improve

the size, more so for smaller values of P .

In principle, the limiting distribution of the Kolmogorov-Smirnov test reported in The-

orem 1 is not different from that of the usual textbook version of the Kolmogorov-Smirnov

test that are derived by analytical calculations (see Durbin, 1973). According to Smirnov

(1948) these values are 1.22, 1.36 and 1.63 for α = 0.10, 0.05 and 0.01, respectively. Unre-

ported Monte Carlo size experiments suggest that our simulated critical values result in tests

that have better size than those based on the theoretical formula: the theoretical formula

appears to be more conservative than our simulation-based procedure.

It is interesting to compare our approach to Diebold et al. (1998). While our null

hypothesis is different from theirs, the procedure that we propose is similar to theirs in that

both their implementation and ours abstract from parameter estimation error (for different

reasons). Thus, our approach can be viewed as a formalization of their approach, albeit

with a different null hypothesis. An additional advantage of our approach is that the critical

value bands that we propose are joint, not pointwise.

The previous discussion suggests that we could also apply our approach to likelihood-ratio

(LR) tests based on the Inverse Normal transformation of the PITs or raw-moment-based

19A finer grid, in theory, could results in a more accurate approximation, but numerically the Cholesky

factorization becomes less accurate. Thus, there is a limited payoff from refining the grid.
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tests on the PITs. We will discuss such approaches in the next section.

Finally, note that our approach provides not only a rationale to the common practice

of evaluating the correct specification of density forecasts using PITs without adjusting for

parameter estimation error (Diebold et al., 1998), but also a methodology for implementing

tests robust to the presence of serial correlation. This more general case is considered next.

3.2 Multi-step-ahead Forecasts

When considering h-step-ahead forecasts, h > 1 and finite, an additional problem arises as

the PITs become serially correlated. Thus, we need to extend our results and allow the

forecasts to be serially correlated under the null hypothesis; that is, when Assumption 2

does not hold.

When evaluating h-step-ahead conditional predictive densities, the next Theorem shows

that ΨP (r) weakly converges to the Gaussian process Ψ (., .), with mean zero and an auto-

covariance function that depends on the serial correlation in the PITs.

Theorem 3 (Correct Specification Tests under Serial Correlation) Under Assump-

tion 1 and H0 in eq. (3): (i) zt+h is U (0, 1) , t = R, ..., T ; (ii) ΨP (r) weakly converges to

the Gaussian process Ψ (.), with mean zero and auto-covariance function E [Ψ (r1) Ψ (r2)] =

σ (r1, r2) , where σ (r1, r2) =
∞∑

d=−∞
[Fd (r1, r2)− F (r1)F (r2)]. (iii) Furthermore,

κP ⇒ sup
r∈[0,1]

|Ψ (r) |,

CP ⇒
∫ 1
0

Ψ (r)2 dr.

In this case, the limiting distribution resembles the one that Corradi and Swanson (2006c)

obtain under dynamic misspecification since the limiting distribution is not free from pa-

rameter estimation error. However, under the null hypothesis, we are not concerned about

dynamic misspecification since the null hypothesis may hold even though a model can be

dynamically misspecified (see Example 3 before). Furthermore, to highlight the theoreti-

cal differences between the null hypothesis in our framework and Corradi and Swanson’s

(2006a), note that the variance in the limiting distribution of the test statistic in Corradi

and Swanson (2006a) is more complicated since it includes the contribution of parameter

estimation error to the variance.

Theorem 3 shows that, in the presence of serial correlation, the critical values depend

on nuisance parameters that appear in the covariance matrix of the PITs. Let r ∈ [0, 1] be
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discretized over a p-dimensional grid, r ≡ [r1, r2, ..., rp]
′, where p is large. Although Inoue

(2001) conjectures that it might be possible to consistently estimate the (p× p) dimensional
covariance of [ξt+h (r1) , ξt+h (r2) , ..., ξt+h (rp)]

′ using a standard Newey and West’s (1987)

HAC estimator, unreported simulations show that, in practice, the estimator is sensitive

to the choice of the bandwidth and the serial correlation properties of the data (see also

Corradi, Jin and Swanson, 2016). We therefore recommend using critical values from a

block version of the weighted bootstrap proposed by Inoue (2001). The assumptions and the

implementation of the bootstrap are described in detail in what follows.

Assumption 1. (i’) Let Q ≥ 16 be an even integer and
{
Zt = (yt, X

′
t)
′}T
t=R

be strong

mixing with mixing coeffi cients α (m) of size −δ, where δ > (1 +Q/2) Q+γ
γ
.

Assumption 3. Let ` be the block length and ηt be a continuous random variable that is

used for random weighting in the block weighted bootstrap. {ηt}T−`+1t=R are independent random

variables, independent of {zt+h}, with zero mean, variance 1/` and E (η4i ) = O (1/`2), where

`→∞ as T →∞ and ` = o
(
P 1/2

)
.

Assumption 3 is the same as Assumption D in Inoue (2001). We follow Inoue (2001,

p. 162) in using ηt ∼ iidN(0, 1/`) when constructing the bootstrap statistics in practice.20

Given the sample ω, let zt+h(ω) denote a particular realization of the PIT. Note that the

bootstrap we describe below requires resampling the PITs, zt+h, not the data Zt: this is the

fundamental difference between our bootstrap approach and Corradi and Swanson’s (2006a).

Define the bootstrap test statistics as

Ψ∗P (r;ω) = P−1/2
T−`+1∑
j=R

ηj

j+`−1∑
i=j

(
1 {zi+h(ω) ≤ r} − 1

P

T∑
t=R

1 {zt+h(ω) ≤ r}
)
,

and κ∗P (ω) = supr∈[0,1] |Ψ∗P (r;ω) |, C∗P (ω) =
∫ 1
0

Ψ∗P (r;ω)2 dr.

Theorem 4 (Bootstrap Validity) Under Assumptions 1(i’,ii-iv), 3 and H0 in eq. (3):

(i) Ψ∗P (., ω)⇒ Ψ (.); (ii) κ∗P (ω)⇒ supr∈[0,1] |Ψ (r) |; and (iii) C∗P (ω)⇒
∫ 1
0

Ψ (r)2 dr, ω−a.s.

The bootstrap can be implemented in practice using the following step-by-step procedure:

(i) Construct the test statistics κP and CP as in Theorem 2;

(ii) Let J be the maximum number of bootstrap replications. For j = 1, 2, ..., J, generate

{κ∗P ;j}Jj=1 and
{
C∗P ;j

}J
j=1
, where κ∗P ;j and C

∗
P ;j are based on draws

{
η
(j)
t

}T−`+1
t=R

;

20See, in particular, Theorem 2.3 in Inoue (2001).
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(iii) Estimate the level-α critical values ĉJκ,α and ĉJC,α from {κ∗P ;j}Jj=1 and
{
C∗P ;j

}J
j=1
,

respectively.

(iv) Reject H0 at the α · 100% significance level if κP > ĉJκ,α and CP > ĉJC,α.

There are several alternative solutions proposed in the literature that one could use within

our approach as well. One approach is to discard data by reducing the effective sampling

rate to ensure an uncorrelated sample (Persson, 1974 and Weiss, 1973). If the PITs are

(h− 1)-dependent, this can be implemented in practice by creating sub-samples of predictive

distributions that are h periods apart. However, this procedure may not be possible in small

samples, since the sub-samples may significantly reduce the size of the sample. In those

cases, one may implement the procedure in several uncorrelated sub-samples of forecasts

that are at least h periods apart and then use Bonferroni methods to obtain a joint test

without discarding observations (see Diebold et al., 1998). However, it is well-known that

Bonferroni methods are conservative; thus the latter procedure, while easy to implement,

may suffer from low power.

Note that our approach can be used to implement Berkowitz’s (2001) likelihood-ratio

(LR) tests based on the Inverse Normal transformation of the PITs or Knueppel’s (2015)

Wald-type raw-moment-based tests on the PITs or the Inverse Normal transformation of the

PITs. As noted in the literature, these approaches have typically abstracted from parameter

estimation uncertainty. When focusing on the traditional null hypothesis, HCS
0 , ignoring

parameter estimation error leads to size distortions. Note that the size distortion is not only

a small sample phenomenon, but persists asymptotically. The next result shows that, since

parameter estimation error is maintained under our null hypothesis H0, eq. (3), there is no

need to correct the asymptotic distribution and the implied critical values of Berkowitz’s

(2001) likelihood ratio and Knueppel’s (2015) raw-moment-based tests to account for para-

meter estimation error.

To formalize the idea, let υt+h = H (zt+h) denote a real-valued function of zt+h. We

first consider Berkowitz’s (2001) test. In Berkowitz (2001) the function is the inverse of

the standard normal distribution, H (zt+h) ≡ Φ̃−1 (zt+h), where Φ̃(.) denotes the standard

Normal distribution.

Corollary 5 (Inverse Normal Tests) Let Φ̃−1 (.) denote the inverse of the standard Nor-

mal distribution function. Under Assumptions 1(ii) and H0 in eq. (3): H (zt+h) ≡ Φ̃−1 (zt+h)

is N (0, 1) .21

21If one strengthens the assumptions to include Assumption 2, then Corollary 5 implies that H (zt+h) ≡
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Thus, one could test for the correct specification of the density forecast by testing the

correct specification of specific moments of Φ̃−1 (zt+h). For example, the researcher could

estimate an AR(1) model for Φ̃−1 (zt+h) and test that the mean and the slope are both

zero, and that the variance is one. This approach has the advantage of being informative

regarding the possible causes underlying the misspecification of the density forecast, as it can

focus on different moments, and it may perform better in small samples. The disadvantage

of the approach is that, unlike the κP and CP tests, it focuses on specific moments of the

distribution rather than the whole (non-parametric) cumulative distribution function.

An alternative test has been proposed by Knueppel (2015). Knueppel (2015) tests the

correct calibration of multi-step-ahead density forecasts using raw moments. For prac-

tical purposes Knueppel (2015) recommends either H (zt+h) = Φ̃−1 (zt+h) or H (zt+h) =
√

12
(
zt+h − 1

2

)
, a standardized version of U(0, 1).

To establish results on the asymptotic distribution of Berkowitz’s (2001) and Knueppel’s

(2015) tests, we introduce additional notation. Let s = s1, s2, ..., sN be a sequence of positive

and finite integers, whereN is the number of finite moments considered by the researcher. Let

ms = E(υst+h) denote the s-th uncentered moment of υt+h and m̂s,P = P−1
∑T

t=R υ
s
t+h denote

its sample counterpart. Finally, let υt+h = [υs1t+h, υ
s2
t+h, ..., υ

sN
t+h]

′,m = [ms1 ,ms2 , ...,msN ]′ and

m̂P = [m̂s1,P , m̂s2,P , ..., m̂sN ,P ]′ denote the vectors of the population and estimated moment

conditions considered by the researcher. In Corollary 6 below, we formalize Berkowitz’s

(2001) and Knueppel’s (2015) tests in our framework, under the following assumptions:22

Assumption 1. (i”)
{
Zt = (yt, X

′
t)
′}T
t=R

is strong mixing with mixing coeffi cients α (m)

of size −λ/ (λ− 2) , where λ > 2.

Assumption 4. (i) E
∣∣υst+h∣∣λ+κ <∞ for some κ > 0 for all t;

(ii) ΩP ≡ P−1
∑T

t=RE
(
υt+hυ

′
t+h

)
+P−1

∑h−1
j=1

∑T
t=R+j

[
E
(
υt+hυ

′
t+h−j

)
+ E

(
υt+h−jυ

′
t+h

)]
is

uniformly positive definite.

Corollary 6 (Raw-Moments-Based Tests) Let D̂P = [m̂P−m]′ and Ω̂P be an estimator

of ΩP such that Ω̂P − ΩP
p−→ 0.23 Under Assumptions 1(i”,ii,iv), Assumption 4 and H0 in

eq. (3): αP ≡ PD̂P Ω̂−1P D̂P
d−→ χ2N .

There are several differences between the κP , CP tests and the αP test. On the one hand,

Φ̃−1 (zt+1) is iidN (0, 1) .
22We thank a referee for suggesting to include this discussion.
23For example, Ω̂P = P−1

∑T
t=R υt+hυ

′
t+h + P−1

∑h−1
j=1 ωj,P

∑T
t=R+j

[
υt+hυ

′
t+h−j + υt+h−jυ

′
t+h

]
, where

ωj,P is a weight function such that ωj,P → 1 as P → ∞ for each j = 1, 2, ... h − 1, e.g. Newey and West’s

(1987) HAC estimator.
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it is important to note that raw-moment-based tests only test a finite number of moments

(e.g. the mean and the variance of the PITs should equal the mean and the variance of a

Uniform(0,1) distribution), while our approach directly tests the whole distribution of the

PITs. Therefore, the αP test has power to detect misspecification only if υt+h includes the

moments that capture misspecification, but would not have power if the misspecification

affects moments that are not included. One of the drawbacks of the αP test, then, is that

it requires the researcher to choose which moments to test and it is unclear how to select

the number of moments to test (for instance, Berkowitz, 2001, tests the first two moments,

while Knueppel, 2015, implements the test in practice based on up to four moments). Our

approach, instead, is equivalent to testing the whole distribution, which corresponds to

testing all the moments. Thus, the κP , CP tests instead do not suffer from this drawback.

On the other hand, the fact that the αP test relies on a finite number of moments gives

it two advantages: first, it may have more power than our test if the misspecification is

fully captured by a few moments only and the researcher has chosen to test exactly those

moments; second, that it is possible to consistently estimate the covariance matrix using

a HAC estimator in the case of serial correlation, while in the κP , CP tests the covariance

matrix is large dimensional: the latter might be a concern for HAC estimation (see Corradi,

Jin and Swanson, 2016), and hence we recommend a bootstrap procedure in the case of serial

correlation. Furthermore, the αP test has a limiting distribution that is nuisance parameter

free, while the κP , CP tests have a limiting distribution that is nuisance parameter free only

for one-step-ahead forecasts.

4 Monte Carlo Evidence

In this section we analyze the size and power properties of our proposed tests in small

samples for both one- and multi-step-ahead forecasting models. Note that comparisons with

alternative methods (such as Corradi and Swanson, 2006b, or González-Rivera and Sun,

2015) are not meaningful since we focus on a null hypothesis that is different from theirs.

4.1 Size Analysis

To investigate the size properties of our tests we consider several Data Generating Processes

(DGPs). The forecasts are based on model parameters estimated in rolling windows for

t = R, ..., T + h. We consider several values for in-sample estimation window of R =
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[25, 50, 100, 200] and out-of-sample evaluation period P = [25, 50, 100, 200, 500, 1000] to eval-

uate the performance of the proposed procedure. While our assumptions require R to be

finite, we consider both small and large values of R to investigate the robustness of our

methodology when R is large.24 The DGPs are the following:

DGP S1 (Baseline Model): We estimate a model yt = βxt−1 + et, et ∼ iidN(0, 1). The

data is generated by yt = µt + xt−1 + εt, εt ∼ iid N(0, 1) and xt ∼ iid N(0, 1), where

µt =


R−1

t−1∑
j=t−R

xj−1yj

R−1
t−1∑

j=t−R
x2j−1

− 1

xt−1.

DGP S2 (Extended Model): We parameterize the model according to the realistic situa-

tion where the researcher is interested in forecasting one-quarter-ahead U.S. real GDP growth

with the lagged term spread from 1959:I-2010:III. We estimate a model yt = βxt−1 + et,

et ∼ iidN(0, 1), while the data has been generated with the DGP: yt = µt + γxt−1 + εt,

εt ∼ iidN (0, 1) , xt = 0.2 + 0.8xt−1 + νt, νt ∼ iid N(0, 1.082) and is independent from εt,

γ = 0.48 and

µt =


R−1

t−1∑
j=t−R+1

xj−1yj

R−1
t−1∑

j=t−R
x2j−1

− γ

xt−1.

DGP S3 (GARCH): Consider the data being generated by a GARCH(1,0), where yt =

σtεt, εt ∼ iidN(0, 1) and the σ2t = ρ0,t + ρ1σ
2
t−1. On the other hand, the forecasting model is

yt = γtet, et ∼ iidN(0, 1), and

ρ0,t =

(
R−1

t−1∑
j=t−R

(
ρ0,j + ρ1σ

2
j−1
)
ε2j − ρ1σ2t−1

)
.

DGPs S1-S3 are based on one-step-ahead forecast densities. DGP S4 considers the case

of h-step-ahead forecast densities (h = 2), where the PITs are serially correlated by con-

struction.

DGP S4 (Serial Correlation): The DGP is yt = µt + xt−1+ εt + ρεt−1, εt ∼ iidN(0, 1),

xt ∼ iid N(0, 1), ρ = 0.2 and µt is as defined in DGP S1. The estimated model is: yt =

βxt−1 + et, et ∼ iid N(0, 1 + ρ2).

24Note that Corradi and Swanson (2006b) focus on a different null hypothesis based on R→∞, and the
theory of our test instead relies on R being finite. In fact, given that the null hypotheses are different, power

in our context corresponds to size in their context; thus comparisons are meaningless.
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DGP S5 (IMA Model): The DGP is ∆yt = µt+ εt−ρεt−1, εt ∼ iidN(0, 1.261), ρ = 0.275

and µt is defined as

µt = R−1
t−1∑

j=t−R
∆yj.

The parameters for the Monte Carlo design are from Stock and Watson (2007, Table

3); we pick their parameterization for the 1960:I-1983:IV sample period, i.e. the period

of Great Inflation when there is more variability in inflation. The estimated model is:

∆yt = β + et, et ∼ iid N(0, 1 + ρ2).

We also consider modified versions of the IMA model to understand the behavior of our

tests for multi-step-ahead forecast horizons. In total, we consider three data generating

processes, ∆yt = µt+ εt −
∑p

j=1 ρ
jεt−1, where p = 1, 3, 11, corresponding to two-, four- and

twelve-step-ahead forecast horizons.

The results for DGP S1 are shown in Table 2. The table shows that our proposed tests

have good size properties. Furthermore, the finite sample critical values improve the test

performance for small values of P (see Panel B). Table 3 shows that our tests perform well

in finite samples in DGPs S2-S5. There are small size distortions in the case of multi-step-

ahead forecast for the small values of P , which typically improve as the sample size increases.

Panels E and F in Table 3 show that the size of the tests is robust to alternative block lengths

used in the bootstrap procedure.

INSERT TABLES 2 AND 3 HERE

4.2 Power Analysis

To investigate the power properties of our tests, we consider the case of misspecification in

the following DGPs.

DGP P1: The data are generated from a linear combination of Normal and χ21 distrib-

utions: yt = µt + xt−1 + (1− c) η1,t + c
(
η22,t − 1

)
/
√

2, where xt, η1,t and η2,t are iidN (0, 1)

random variables that are independent of each other and µt is as defined in DGP S1. The

researcher tests whether the data result from a Normal distribution, i.e. considers the model

yt = βxt−1 + et, et ∼ iidN(0, σe). When c is zero, the null hypothesis is satisfied. When c is

positive, the density becomes a convolution of a standard Normal and a χ21 distribution (with

mean zero and variance one), where the weight on the latter becomes larger as c increases.25

25Note that
(
η22,t − 1

)
/
√

2 is a chi-squared distribution with zero mean and variance one, that is, it has
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DGP P2: We estimate a model yt = βxt−1 + et, et ∼ iidN(0, σe). The data is generated

by yt = µt + xt−1 + εt, εt ∼ iid tν , where xt ∼ iidN(0, 1), µt is defined as in DGP S1, while

ν is the number of degrees of freedom. When ν is large, the null hypothesis is satisfied; as

ν decreases, the misspecification increases.

The results shown in Table 4 suggest that our proposed specification tests (κP , CP ) have

good power properties in detecting misspecification in the predictive density.26

INSERT TABLE 4 HERE

5 Empirical Analysis

This section provides an empirical assessment of the correct specification of the Survey of

Professional Forecasters (SPF) density forecasts of inflation and output growth. The reasons

why we focus on this example is as follows. SPF panelists use a combination of estimated

models and expert judgment to forecast, even though the models are not known and, even

if they were, they apply expert judgment to trim the forecasts and/or combine models’

forecasts. In fact, in a recent SPF survey overview, Stark (2013, p. 2) found that: “Over-

whelmingly, the panelists reported using mathematical models to form their projections.

However, we also found that the panelists apply subjective adjustments to their pure-model

forecasts.”Interestingly, the survey also found that SPF panelists “change their forecasting

approach with the length of the forecast horizon. At the shortest horizons (two years out and

less), mathematical models are widely used by the panelists. Between 18 to 20 forecasters

reported using models at these short horizons (...). Panelists also reported using models for

long-horizon projections as well (three or more years out), although proportionately fewer

rely on models at the long horizons than at the short horizons. (...) They use a combination

of models in forming their expectations, rather than just one model.” Thus, in the SPF

density forecast case, it is impossible to correct for parameter estimation error: the only

feasible approach is to maintain it under the null hypothesis. This is exactly the approach

we follow in our paper. In fact, one of the advantages of our testing approach is that the

only information needed for the implementation is a predictive density: knowledge of the

model that generated the forecasts is not necessary.

the same mean and variance as the normal distribution we have under the null hypothesis, although the

shape is different.
26Unreported results show that the test still has power when we consider smaller sample sizes, e.g. T = 100.
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Diebold et al. (1999) evaluate the correct specification of the density forecasts of inflation

in the SPF.27 In this section, we conduct a formal test of correct specification for the SPF

density forecasts using our proposed procedure and compare our results to theirs. In addition

to inflation, we also investigate the conditional density forecasts of output growth.

We use real GNP/GDP and the GNP/GDP deflator as measures of output and prices.

The mean probability distribution forecasts are obtained from the Federal Reserve Bank of

Philadelphia (Croushore and Stark, 2001). In the SPF data set, forecasters are asked to

assign a probability value (over pre-defined intervals) of year-over-year inflation and out-

put growth for the current (nowcast) and following (one-year-ahead) calendar years. The

forecasters update the assigned probabilities for the nowcasts and the one-year-ahead fore-

casts on a quarterly basis. The probability distribution provided by the SPF is discrete,

and we base our results on a continuous approximation by fitting a Normal distribution.

The realized values of inflation and output growth are based on the real-time data set for

macroeconomists, also available from the Federal Reserve Bank of Philadelphia.

The analysis of the SPF probability distribution is complicated since the SPF question-

naire has changed over time in various dimensions: there have been changes in the definition

of the variables, the intervals over which probabilities have been assigned, as well as the time

horizon for which forecasts have been made. To mitigate the impact of these problematic

issues, we truncate the data set and consider only the period 1981:III-2011:IV. To evaluate

the density forecasts we use the year-over-year growth rates of output and prices calculated

from the first quarterly vintage of the real GNP/GDP and the GNP/GDP deflator in levels.

For instance, in order to obtain the growth rate of real output for 1981, we take the 1982:I

vintage of data and calculate the growth rate of the annual average GNP/GDP from 1980

to 1981. We consider the annual-average over annual-average percent change (as opposed to

fourth-quarter over forth-quarter percent change) in output and prices to be consistent with

the definition of the variables that SPF forecasters provide probabilistic predictions for.

The empirical results are shown in Table 5. Asterisks (‘*’) indicate rejection at the 5%

significance level based on the critical values in Theorem 2 (reported in Table 1, Panel A).

The test rejects correct specification for both output growth and inflation, except for output

growth at the one-year-ahead forecast horizon.

27The SPF provides two types of density forecasts: one is the distribution of point forecasts across fore-

casters (which measures the dispersion of point forecasts across forecasters), and the other is the mean of

the probability density forecasts (which measures the average of the density forecasts across forecasters). We

focus on the latter.
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INSERT TABLE 5 HERE

Our results are important in light of the finding that survey forecasts are reportedly

providing the best forecasts of inflation. For example, Ang et al. (2007) find that sur-

vey forecasts outperform other forecasting methods (including the Phillips curve, the term

structure and ARIMA models) and that, when combining forecasts, the data put the highest

weight on survey information. Our results imply that, in contrast, survey forecasts do not

characterize the predictive distribution of inflation correctly.

Figure 2 plots the empirical CDF of the PITs (solid line). Under the null hypothesis in

Theorem 2, the PITs should be uniformly distributed; thus the CDF of the PITs should be

the 45 degree line. The figure also reports the critical values based on the κP test. If the

empirical CDF of the PITs is outside the critical value bands, we conclude that the density

forecast is misspecified. Clearly, the correct specification is rejected in all cases except the

one-year-ahead density forecast of GDP growth.

The figure also provides a visual analysis of the misspecification in the PITs. For instance,

in the case of the current year output growth forecasts in Panel A of Figure 2, it appears

that there are not as many realization in the left tail of the distribution relative to what the

forecasters expected (the slope in the left tail is flat relative to the 45 degree line). In the

case of the current year inflation forecasts in Panel B, the forecasters overestimate both tails

of the distribution and, instead, do not put as much probability on potential outcomes in

the middle of the distribution. One-year-ahead inflation forecasts appear to have a different

dynamics: there is no evidence of misspecification in the left tail, but there are many more

realizations relative to expected frequencies in the left half of the distribution. This also

comes at the expense of misspecifying the right tail of the distribution: the forecasters are

more optimistic about extremely positive inflation scenarios relative to the realized outcomes.

INSERT FIGURES 2 AND 3 HERE

For comparison, Figure 3 reports results based on Diebold et al.’s (1998) test. Panel A

plots the histogram of the PITs of output growth for both the density nowcast (left-hand

panel) and the one-year-ahead density forecast (right-hand panel). In addition to the PITs,

we also depict the 95% confidence interval (dotted lines) using a Normal approximation to a

binomial distribution similar to Diebold et al.’s (1998). Both current year and one-year-ahead

density forecasts of output growth in Panel A are misspecified, although misspecification is

milder in the case of one-year-ahead output growth. Figure 3, Panel B, shows the histogram
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of the PITs for inflation. According to this test, both the density nowcast and one-year-

ahead forecast overestimate tail risk. This phenomenon is more pronounced for the nowcast.

Overall, the results obtained by using Diebold et al.’s (1998) test are broadly similar to those

obtained by using the test that we propose in this paper, with one important exception. In

the case of one-year-ahead GDP growth forecasts, our test based on Theorem 2 does not

reject, whereas the Diebold et al. (1998) test does, despite the fact that both rely on assuming

iid-ness of the PITs. The discrepancy in the results is most likely due to the fact that the

latter test is pointwise (for each bin), whereas we jointly test the correct specification across

all quantiles in the empirical distribution function: thus, in order to correctly account for

the joint null hypothesis, our test has larger critical values than theirs.

Once our tests reject, it is of interest to investigate how one can improve the calibra-

tion of the density forecast. Consider, for example, SPF’s predictive densities of inflation.

Figure 4 plots the historical evolution of the mean probability forecasts of inflation (solid

line), together with the 2.5-th, 5-th, 50-th, 95-th and 97.5-th percentiles of the predictive

distribution. The picture shows that the density forecasts for both the current year and the

next have evolved over time; in particular, they have become tighter towards the end of the

sample. When compared to the realization (dash-dotted line), the forecast distribution looks

reasonable, as the realization is contained within the 90% confidence interval throughout the

sample period.

INSERT FIGURES 4 AND 5 HERE

However, the visual evidence is misleading: after studying the PITs and implementing

our test (whose results are depicted in Figures 2 and 3, Panel B), we conclude that the

distribution is not correctly calibrated, i.e. on average the realizations are not consistent

with the ex-ante probabilities of potential outcomes. Moreover, for the case of one-year-

ahead forecasts (right-hand figure in Panel B) our test finds that there are many more

realizations below the mean relative to what has been anticipated. A careful observation

of Figure 4 would reinforce that evidence: frequently, the realization of one-year-ahead

inflation is below the forecasted mean of the distribution. Thus, the pictures suggest that

the distribution is misspecified and the reason is the misspecification of the mean. To

investigate this formally, one can test for forecast unbiasedness; that is, test whether α = 0

in the regression: yt+1 − ŷt+1 = α + εt. The full sample estimate is α̂ = −0.69 with a

t-statistics of −5.38.28 The results appear to be consistent with the message in the figures.

28The t-statistics is constructed with a Newey-West (1987) HAC estimator for the variance. If one was
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In fact, after adjusting the mean of the distribution by adding the estimated bias (depicted

in Figure 5, left panel), we obtain a well-calibrated distribution: the right panel in Figure

5 shows the results of the test for correct calibration after the (infeasible) bias adjustment,

and confirms that indeed the correct specification is not rejected by our test.

To summarize, this example shows that our test can be used as a first step to determine

whether the forecast density is correctly calibrated; if our test rejects the correct calibration

of the forecast density, an additional analysis of the plot of the test statistic can provide

guidance on the possible sources of the problem; additional (forecast rationality) tests can

then verify the conjecture and help improve the calibration of the density forecast for the

future (provided the source of the misspecification does not change over time).

6 Conclusions

This paper proposes new tests for predictive density evaluation. The techniques are based

on Kolmogorov-Smirnov and Cramér-von Mises-type test statistics and focus both on the

whole distribution as well as specific parts of it. We also propose methodologies that can be

applied to multiple-step-ahead forecast horizons. Our empirical analyses uncover that both

SPF output growth and inflation density forecasts are misspecified. We also investigate

possible avenues that practitioners may follow in order to improve density forecasts using

our test results.

Note that our test has wide applicability: the forecast density to be evaluated in our

framework can be obtained in many ways, either frequentist or Bayesian. In fact, in this

paper, we are proposing a general way to evaluate forecast distributions; in particular, if one

is interested in evaluating whether a forecast distribution obtained by any method (including

Bayesian methods and Bayesian model averaging) is correctly specified using frequentist

methods, one can use the method we propose.29

Acknowledgments: We thank the editor, two anonymous referees, T. Clark, F. Diebold,

G. Ganics, A. Inoue, A. Patton, B. Perron, F. Ravazzolo, N. Swanson, M. Watson, semi-

nar participants at George Washington Univ., Lehigh Univ., Univ. of California-Riverside,

University of Mississippi, Texas A&M, Rutgers, CORE Louvain-la-Neuve, Univ. of New

concerned about the presence of instabilities, one could alternatively apply an unbiasedness test robust to

instabilities —see Rossi and Sekhposyan (2016).
29For example, there are several cases in the literature where a model is estimated with Bayesian methods

and yet inference is based on PITs, e.g. Clark (2011).

27



South Wales, Monash, ECB and the 2012 Econometric Society Australasian Meetings, the

2012 Time Series Econometrics Workshop in Zaragoza, the 2013 CIREQ Time Series and

Financial Econometrics Conference, the 2013 St. Louis Fed Applied Time Series Econo-

metrics Workshop, the 2013 UCL Conference on Frontiers in Macroeconometrics, the 2013

Conference on Forecasting Structure and Time Varying Parameter Patterns, the 2014 EC 2

Conference, the 2015 CAMP Workshop on Empirical Macroeconomics, the 2015 CIRANO-

CIREQ Workshop on Data Revision in Macroeconomic Forecasting and Policy and 2nd

Econometrics Workshop at Notre Dame for comments. B. Rossi gratefully acknowledges

financial support from the European Research Agency’s Marie Curie Grant 303434, ERC

Grant 615608 and the Spanish ministry of the Economy and Competitiveness (through the

Severo Ochoa Programme for Centers of Excellence in R&D — SEV-2015-0563 — and the

Grant ECO2015-68136-P, FEDER, UE).

References

[1] Aastveit, K.A., C. Foroni and F. Ravazzolo, 2017, Density Forecasts with MIDAS Mod-

els. Journal of Applied Econometrics 32(4), 783-801.

[2] Amisano, G. and R. Giacomini, 2007, Comparing Density Forecasts via Weighted Like-

lihood Ratio Tests. Journal of Business and Economic Statistics 25(2), 177-190.

[3] Ang, A., G. Bekaert and M. Wei, 2007, Do Macro Variables, Asset Markets or Surveys

Forecast Inflation Better?. Journal of Monetary Economics 54, 1163-1212.

[4] Bai, J., 2003, Testing Parametric Conditional Distributions of Dynamic Models, Review

of Economics and Statistics 85(3), 531-549.

[5] Bai, J. and S. Ng, 2005, Tests for Skewness, Kurtosis, and Normality for Time Series

Data. Journal of Business and Economic Statistics 23(10), 49-60.

[6] Berkowitz, J., 2001, Testing Density Forecasts, With Applications to Risk Management.

Journal of Business and Economic Statistics 19(4), 465-474.

[7] Billio, M., R. Casarin, F. Ravazzolo and H. van Dijk, 2013, Time-varying Combinations

of Predictive Densities using Nonlinear Filtering. Journal of Econometrics 177(2), 213—

232.

28



[8] Bontemps, C. and N. Meddahi, 2012, Testing Distributional Assumptions: A GMM

Approach. Journal of Applied Econometrics 27(6), 978-1012.

[9] Clark, T., 2011, Real-Time Density Forecasts from VARs with Stochastic Volatility.

Journal of Business and Economic Statistics 29(3), 327-341.

[10] Clements, M. P., 2004, Evaluating the Bank of England Density Forecasts of Inflation.

The Economic Journal 114, 844—866.

[11] Corradi, V., S. Jin and N. Swanson, 2016, Improved Tests for Forecast Comparisons.

Mimeo, University of Surrey.

[12] Corradi, V. and N. R. Swanson, 2006a, Bootstrap Conditional Distribution Tests in the

Presence of Dynamic Misspecification. Journal of Econometrics 133, 779-806.

[13] Corradi, V. and N. R. Swanson, 2006b, Predictive Density Evaluation, in: G. Elliott,

C. Granger and A. Timmermann, (Eds.), Handbook of Economic Forecasting, Vol. 1,

Elsevier, pp. 197-284.

[14] Corradi, V. and N. R. Swanson, 2006c, Predictive Density and Conditional Confidence

Interval Accuracy Tests. Journal of Econometrics 135(1—2), 187-228.

[15] Croushore, D. and T. Stark, 2001, A Real-time Data Set for Macroeconomists. Journal

of Econometrics 105(1), 111-130.

[16] Davidson, J., 1994, Stochastic Limit Theory: An Introduction for Econometricians.

Oxford University Press.

[17] Diks, C., V. Panchenkob and D. van Dijk, 2011, Likelihood-based Scoring Rules for

Comparing Density Forecasts in Tails. Journal of Econometrics 163, 215—230.

[18] Diebold, F. X., T. A. Gunther, and A. S. Tay, 1998, Evaluating Density Forecasts with

Applications to Financial Risk Management. International Economic Review 39(4), 863-

883.

[19] Diebold F.X., A.S. Tay and K.F. Wallis, 1999, Evaluating Density Forecasts of Inflation:

the Survey of Professional Forecasters, in: Engle R.F. and H. White, (Eds.), Cointegra-

tion, Causality, and Forecasting: A Festschrift in Honour of Clive W.J. Granger. Oxford

University Press, pp. 76-90.

29



[20] Durbin, J., 1973, Distribution Theory for Tests Based on the Sample Distribution Func-

tion. SIAM, Philadelphia.

[21] Edge, R. M. and R. S. Gürkaynak, 2010, How Useful Are Estimated DSGE Model

Forecasts for Central Bankers?. Brookings Papers on Economic Activity 41(2), 209-259.

[22] Edge, R. M., M. T. Kiley and J. P. Laforte, 2010, A Comparison of Forecast Performance

Between Federal Reserve Staff Forecasts, Simple Reduced-form Models, and a DSGE

Model. Journal of Applied Econometrics 25(4), 720-754.

[23] Elliott, G. and A. Timmermann, 2008, Economic Forecasting. Journal of Economic

Literature 46, 3-56.

[24] Elliott, G. and A. Timmermann, 2016, Economic Forecasting. Princeton University

Press, Princeton.

[25] Franses, P. H. and D. van Dijk, 2003, Selecting a Nonlinear Time Series Model using

Weighted Tests of Equal Forecast Accuracy. Oxford Bulletin of Economics and Statistics

65, 727—744.

[26] Giacomini, R. and H.White, 2006, Tests of Conditional Predictive Ability. Econometrica

74(6), 1545-1578.

[27] González-Rivera, G., Z. Senyuz and E. Yoldas, 2011, Autocontours: Dynamic Specifi-

cation Testing. Journal of Business and Economic Statistics 29(1), 186-200.

[28] González-Rivera, G. and E. Yoldas, 2012, Autocontour-based Evaluation of Multivariate

Predictive Densities. International Journal of Forecasting 28(2), 328-342.

[29] González-Rivera, G. and Y. Sun, 2015, Generalized Autocontours: Evaluation of Mul-

tivariate Density Models. International Journal of Forecasting 31(3), 799-814.

[30] Gürkaynak, R. S., B. Kisacikoglu and B. Rossi, 2013, Do DSGE Models Forecast More

Accurately Out-of-Sample than VAR Models?, in: T.B. Fomby, L. Kilian and A. Mur-

phy, (Eds.), VAR Models in Macroeconomics —New Developments and Applications:

Essays in Honor of Christopher A. Sims, Vol. 32. Emerald Group Publishing, United

Kingdom, pp. 27-79.

[31] Hayashi, F., 2000, Econometrics. Princeton University Press, Princeton.

30



[32] Hong, Y. M. and H. Li, 2005, Nonparametric Specification Testing for Continuous Time

Models with Applications to Term Structure of Interest Rates. Review of Financial

Studies 18(1), 37-84.

[33] Hong, Y., H. Li and F. Zhao, 2007, Can the Random Walk Model Be Beaten in Out-of-

sample Density Forecasts? Evidence From Intraday Foreign Exchange Rates. Journal

of Econometrics 141(2), 736—776.

[34] Inoue, A., 2001, Testing for Distributional Change in Time Series. Econometric Theory

17, 156-187.

[35] Inoue A. and B. Rossi, 2012, Out-of-sample Forecast Tests Robust to the Window Size

Choice. Journal of Business and Economics Statistics 30(3), 432-453.

[36] Jore, A.S., J. Mitchell and S. P. Vahey, 2010, Combining Forecast Densities from VARs

with Uncertain Instabilities. Journal of Applied Econometrics 25(4), 621-634.

[37] Knueppel, M., 2015, Evaluating the Calibration of Multi-Step-Ahead Density Forecasts

Using Raw Moments. Journal of Business and Economic Statistics 33(2), 270-281.

[38] Newey, W.K. and K.D. West, 1987, A Simple, Positive Semi-definite, Heteroskedasticity

and Auto-correlation Consistent Covariance Matrix. Econometrica 55(3), 703-708.

[39] Persson, J., 1974, Comments on Estimations and Tests of EEGAmplitude Distributions.

Electroencephalography and Clinical Neurophysiology 37, 309-313.

[40] Ravazzolo, F. and S. P. Vahey, 2014, Forecast Densities for Economic Aggregates from

Disaggregate Ensembles. Studies of Nonlinear Dynamics and Econometrics 18(4), 367—

381.

[41] Rossi, B. and T. Sekhposyan, 2016, Forecast Rationality Tests in the Presence of Insta-

bilities, With Applications to Federal Reserve and Survey Forecasts. Journal of Applied

Econometrics 31(3), 507-532.

[42] Shorack, G. R. and J. A. Wellner, 1986, Empirical Processes with Applications to

Statistics, Wiley, United Kingdom.

[43] Smets, F. and R.Wouters, 2007, Shocks and Frictions in US Business Cycles: A Bayesian

DSGE Approach. American Economic Review 97(3), 586-607.

31



[44] Smirnov, N ., 1948, Table for Estimating the Goodness of Fit of Empirical Distributions.

Annals of Mathematical Statistics 19, 279-281.

[45] Stark, T., 2013, SPF Panelists’Forecasting Methods: A Note on the Aggregate Results

of a November 2009 Special Survey. Mimeo, Real-Time Data Research Center Research

Discussion Paper.

[46] White, H., 2001, Asymptotic Theory for Econometricians. Revised Edition, Academic

Press, Cambridge (USA).

[47] Weiss, M. S., 1973, Modifications of the Kolmogorov-Smirnov Statistic for Use with

Correlated Data. Journal of the American Statistical Association 74, 872-875.

Appendix A. Proofs

This Appendix provides proofs for Theorems 1, 2, 3, 4 and Corollaries 5 and 6. The sequence

of the proofs is as follows. First, we prove part (i) and (ii) in Theorem 3, then proceed to

proving Theorem 1, which follows from Theorem 3(i,ii) under Assumption 2; finally, we prove

Theorem 2 and part (iii) in Theorem 3, Theorem 4 and Corollaries 5 and 6.

Proof of Theorem 3(i,ii). (i) Under Assumption 1(ii) andH0 in eq. (3), by the proof of

Lemma 1 in Bai (2003), {zt+h}Tt=R is U (0, 1). (ii) In what follows, we show that Assumption

1(i) satisfies the assumptions in Theorem 3.49 in White (2001) as well Assumption A in Inoue

(2001). If Zt is strong α−mixing with coeffi cients of size −δ, δ > 0, so is any measurable

function of a finite number of leads and lags of Zt (White, 2001, Theorem 3.49); in our

context, g(Zt, ..., Zt−R) is the cumulative distribution function and R is finite by Assumption

1(iv). Furthermore, since g(Zt, ..., Zt−R) is strong mixing with coeffi cient α(m) of size −δ
then α(m) = O(m−δ−ε) for some ε > 0 (White, 2001, Definition 3.45). That is, there exists

a constant B <∞ such that |α(m)|
m−δ−ε ≤ B for every m (Davidson, 1994, p.31). Assumption A

in Inoue (2001) requires that
∞∑
m=1

m2α (m)
γ

4+γ <∞ for some γ ∈ (0, 2) . Note that

∞∑
m=1

m2α (m)
γ

4+γ =

∞∑
m=1

m2

(
α (m)

m−δ−ε

) γ
4+γ (

m−δ−ε
) γ
4+γ ≤

∞∑
m=1

m2

∣∣∣∣ α (m)

m−δ−ε

∣∣∣∣ γ
4+γ (

m−δ−ε
) γ
4+γ

≤ B
γ

4+γ

∞∑
m=1

m2
(
m−δ−ε

) γ
4+γ ≤ B

∞∑
m=1

m2−(δ+ε) γ
4+γ ,
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where B ≡ B
γ

4+γ < ∞. The series
∞∑
m=1

m2−(δ+ε) γ
4+γ is a harmonic series, convergent if

2−(δ + ε) γ
4+γ

< −1, i.e. if δ > 34+γ
γ
. Thus, our Assumption 1(i) satisfies Inoue’s Assumption

A. Assumption 1(ii, iii) satisfy Inoue’s Assumption B under the null. Consequently, Theorem

3 (ii) follows from Inoue (2001), Theorem 2.1, by letting (in Inoue’s notation) r = 1.

Proof of Theorem 1. (i) Follows from Bai (2003, lemma 1).

(ii) The result follows from Theorem 3 noting that, from Inoue (2001 p.161, letting r = 1

in his notation), under iid, the covariance simplifies to σ (r1, r2) = F0 (r1, r2)−F (r1)F (r2) =

min (r1, r2) − r1r2, where the last equality follows from Shorack and Wellner (1986, p.131)

and the fact that {zt+1}Tt=R is iid Uniform(0,1).
Proof of Theorems 2 and 3(iii). Theorem 2 follows fromTheorem 1 by the Continuous

Mapping theorem. Similarly, Theorem 3 follows from Theorem 3(i,ii) by the Continuous

Mapping theorem.

Proof of Theorem 4. (i) In what follows, we show that Assumption 1(i’) satisfies the

assumptions in Theorem 3.49 in White (2001) as well Assumption C in Inoue (2001). If Zt
is strong α−mixing with coeffi cients of size −δ, δ > 0, so is any measurable function of a

finite number of leads and lags of Zt, g(Zt, ..., Zt−R) (White, 2001, Theorem 3.49); in our

context, g(Zt, ..., Zt−R) is the cumulative distribution function and R is finite by Assumption

1(iv). Furthermore, since g(Zt, ..., Zt−R) is strong mixing with coeffi cients α(m) of size −δ
then α(m) = O(m−δ−ε) for some ε > 0 (White, 2001, Definition 3.45). That is, there exists

a constant B < ∞ such that |α(m)|
m−δ−ε ≤ B for every m (Davidson, 1994, p.31). Assumption

C in Inoue (2001) requires that
∞∑
m=1

mQ/2α (m)
γ

Q+γ < ∞ for some γ > 0 and even integer

Q ≥ 16. Note that:

∞∑
m=1

mQ/2α (m)
γ

Q+γ =

∞∑
m=1

mQ/2

(
α (m)

m−δ−ε

) γ
Q+γ (

m−δ−ε
) γ
Q+γ ≤

∞∑
m=1

mQ/2

∣∣∣∣ α (m)

m−δ−ε

∣∣∣∣ γ
Q+γ (

m−δ−ε
) γ
Q+γ

≤ B
γ

Q+γ
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m=1

mQ/2
(
m−δ−ε

) γ
Q+γ ≤ B

∞∑
m=1

mQ/2−(δ+ε) γ
Q+γ ,

where B ≡ B
γ

Q+γ < ∞. The series
∞∑
m=1

m
Q
2
−(δ+ε) γ

Q+γ is a harmonic series, convergent if

Q
2
− (δ + ε) γ

Q+γ
< −1, i.e. if δ >

(
1 + Q

2

)
Q+γ
γ
. Thus, our Assumption 1(i’) satisfies Inoue’s

Assumption C. Assumption 1(ii, iii) satisfy Inoue’s Assumption B under the null. Conse-

quently, Theorem 4 follows from Inoue (2001), Theorem 2.3, by letting (in Inoue’s notation)

r = 1.
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Proof of Corollary 5. Under Assumptions 1(ii) and H0 in eq. (3), it follows from

Theorem 3 that zt+h is U(0, 1). The result follows from the inverse transformation method,

which implies that the inverse standard Normal of a U(0, 1) random variable is a standard

Normal.

Proof of Corollary 6. Under Assumptions 1(ii) and H0 in eq. (3), zt+h is U(0, 1).

Assumption 1(i”) is the same as assumption (i) in Theorem 3 in Giacomini andWhite (2006).

If Zt is strong mixing with coeffi cients α(m) of size−λ/ (λ− 2), so is any measurable function

of a finite number of leads and lags of Zt, g(Zt, ..., Zt−R), where R is finite (White, 2001,

Theorem 3.49). Note that H (zt+h)
s is g(Zt, ..., Zt−R) in this case. Consequently, H (zt+h)

s is

also mixing of size −λ/ (λ− 2) . Then, under Assumption 4, and the fact that Ω̂P −ΩP
p−→ 0,

a standard Central Limit Theorem applies as in Giacomini and White (2006, Theorem 3),

and the corollary follows directly.
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Appendix B. Tables and Figures

Table 1. Critical Values

κα Cα

α : 0.01 0.05 0.10 0.01 0.05 0.10

Panel A. Tests on the Whole Distribution

Correct Specification Test 1.61 1.34 1.21 0.74 0.46 0.35

Panel B. Tests on Specific Parts of the Distribution

Left Tail r ∈ [0, 0.25] 1.24 1.00 0.88 0.56 0.34 0.24

Left Half r ∈ [0, 0.50] 1.54 1.26 1.12 0.86 0.52 0.38

Right Half r ∈ [0.50, 1] 1.53 1.25 1.12 0.85 0.52 0.38

Right Tail r ∈ [0.75, 1] 1.24 1.00 0.88 0.56 0.34 0.24

Center r ∈ [0.25, 0.75] 1.61 1.33 1.19 1.18 0.71 0.52

Tails r ∈ {[0, 0.25] ∪ [0.75, 1]} 1.33 1.10 0.99 0.41 0.27 0.21

Note: Panel A reports the critical values for the test statistics κP and CP at the 1%, 5% and 10%

nominal sizes (α = 0.01, 0.05 and 0.10). Panel B reports the critical values for the same statistics for specific

parts of the distributions, indicated in the first and second columns. The number of Monte Carlo replications

is 1,000,000. The domain for r is discretized with r = [0 : 0.001 : 1].
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Table 2: Size Properties

Panel A: DGP S1 (Asymptotic Critical Values)

κP CP

P R : 25 50 100 200 25 50 100 200

25 0.044 0.046 0.048 0.049 0.047 0.056 0.055 0.052

50 0.046 0.050 0.045 0.046 0.046 0.049 0.051 0.050

100 0.050 0.051 0.045 0.049 0.050 0.053 0.047 0.053

200 0.051 0.050 0.055 0.051 0.054 0.055 0.053 0.052

500 0.061 0.056 0.053 0.056 0.058 0.054 0.055 0.053

1000 0.053 0.050 0.048 0.047 0.050 0.051 0.050 0.050

Panel B: DGP S1 (Finite Sample Critical Values)

κP CP

P R : 25 50 100 200 25 50 100 200

25 0.050 0.054 0.057 0.053 0.048 0.059 0.062 0.053

50 0.050 0.059 0.048 0.050 0.044 0.057 0.052 0.052

100 0.050 0.047 0.045 0.049 0.051 0.052 0.049 0.052

200 0.049 0.048 0.057 0.051 0.052 0.053 0.059 0.054

500 0.057 0.052 0.056 0.049 0.058 0.055 0.061 0.050

1000 0.052 0.053 0.055 0.050 0.045 0.055 0.053 0.053

Note: The table reports empirical rejection frequencies for the test statistics κP and CP in eqs. (4) and

(5) at the 5% nominal size for various values of P and R. The number of Monte Carlo replications is 5,000.

The domain for r is discretized: r = [0 : 0.001 : 1]. The critical values used for Panel A are based on the

asymptotic distribution, reported in Table 1, Panel A, while the critical values used for Panel B are based

on simulated finite-sample distributions with 5,000 Monte Carlo replications.
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Table 3: Size Properties

Panel A. DGP S2 (IID Case)

κP CP

P R : 25 50 100 200 25 50 100 200

25 0.044 0.046 0.044 0.042 0.049 0.048 0.049 0.050

50 0.051 0.046 0.044 0.048 0.054 0.053 0.049 0.052

100 0.046 0.044 0.044 0.046 0.051 0.047 0.046 0.047

200 0.045 0.051 0.050 0.050 0.044 0.051 0.047 0.049

500 0.050 0.048 0.050 0.053 0.048 0.046 0.048 0.051

1000 0.046 0.045 0.048 0.044 0.050 0.045 0.046 0.049

Panel B. DGP S3 (GARCH Case)

κP CP

P R : 25 50 100 200 25 50 100 200

25 0.046 0.046 0.048 0.049 0.049 0.056 0.054 0.052

50 0.048 0.051 0.045 0.046 0.048 0.050 0.051 0.049

100 0.051 0.052 0.045 0.050 0.052 0.054 0.047 0.054

200 0.051 0.050 0.055 0.051 0.054 0.056 0.053 0.052

500 0.061 0.057 0.053 0.056 0.057 0.056 0.055 0.054

1000 0.054 0.050 0.048 0.047 0.050 0.051 0.050 0.050

Panel C. DGP S4 (Serially Correlated Case)

κP CP

P R : 25 50 100 200 25 50 100 200

25 0.142 0.150 0.151 0.143 0.126 0.133 0.131 0.129

50 0.115 0.121 0.117 0.111 0.100 0.107 0.110 0.101

100 0.104 0.099 0.095 0.098 0.088 0.096 0.086 0.093

200 0.082 0.089 0.084 0.085 0.079 0.083 0.078 0.082

500 0.080 0.076 0.073 0.076 0.080 0.076 0.071 0.074

1000 0.066 0.066 0.067 0.066 0.068 0.068 0.066 0.065

Note: The table reports empirical rejection frequencies for the test statistics κP and CP in eqs. (4) and

(5) at the 5% nominal size. The number of Monte Carlo replications is 5,000; r = [0 : 0.001 : 1]. Critical

values for DGPs S2-S3 are in Table 1, Panel A. For DGP S4 and S5, the critical values are based on 200

bootstrap replications. Block length is [P
1
3 ], except in Panel G, where it is [P

1
4 ]. [.] denotes a floor operator.
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Table 3 (continued): Size Properties

Panel D: DGP S5 (IMA Case, h = 2)

κP CP

P R : 25 50 100 200 25 50 100 200

25 0.081 0.081 0.084 0.079 0.053 0.054 0.057 0.054

50 0.074 0.072 0.080 0.074 0.052 0.052 0.058 0.050

100 0.068 0.067 0.064 0.064 0.051 0.051 0.050 0.048

200 0.059 0.062 0.065 0.060 0.049 0.053 0.048 0.048

500 0.050 0.055 0.063 0.054 0.049 0.052 0.056 0.046

1000 0.052 0.053 0.051 0.053 0.049 0.049 0.048 0.050

Panel E: DGP S5 (IMA Case, h = 4)

κP CP

P R : 25 50 100 200 25 50 100 200

25 0.061 0.062 0.066 0.063 0.034 0.031 0.037 0.034

50 0.060 0.061 0.060 0.056 0.034 0.037 0.037 0.033

100 0.051 0.058 0.057 0.050 0.034 0.040 0.038 0.037

200 0.045 0.049 0.051 0.053 0.034 0.038 0.036 0.036

500 0.044 0.050 0.054 0.048 0.041 0.042 0.047 0.041

1000 0.047 0.049 0.047 0.044 0.044 0.041 0.042 0.043

Panel F: DGP S5 (IMA Case, h = 12)

κP CP

P R : 25 50 100 200 25 50 100 200

25 0.057 0.057 0.061 0.054 0.034 0.035 0.028 0.030

50 0.058 0.065 0.058 0.055 0.034 0.039 0.037 0.031

100 0.051 0.051 0.057 0.047 0.036 0.035 0.035 0.031

200 0.046 0.047 0.049 0.045 0.037 0.033 0.036 0.033

500 0.047 0.047 0.053 0.044 0.036 0.041 0.048 0.034

1000 0.044 0.047 0.046 0.047 0.042 0.039 0.043 0.044

Panel G: DGP S5 (IMA Case - Robustness, h = 12)

κP CP

P R : 25 50 100 200 25 50 100 200

25 0.056 0.056 0.058 0.053 0.036 0.031 0.030 0.028

50 0.036 0.040 0.036 0.035 0.020 0.021 0.019 0.020

100 0.038 0.044 0.044 0.038 0.024 0.024 0.026 0.022

200 0.030 0.033 0.035 0.034 0.019 0.020 0.021 0.021

500 0.033 0.033 0.041 0.031 0.022 0.028 0.032 0.026

1000 0.035 0.037 0.036 0.038 0.030 0.031 0.030 0.030
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Table 4. Power Properties

DGP P1 DGP P2

c κP CP ν κP CP

0 0.064 0.064 30 0.041 0.049

0.15 0.061 0.063 10 0.069 0.056

0.30 0.082 0.086 7 0.144 0.103

0.35 0.131 0.136 6 0.260 0.190

0.40 0.261 0.257 5 0.501 0.459

0.45 0.548 0.528 4 0.848 0.867

0.50 0.865 0.882 3 0.998 0.998

0.60 1.000 1.000 2 1.000 1.000

Note: The table reports empirical rejection frequencies for the test statistics κP and CP in eqs. (4) and

(5) for P = 960 and R = 40; the nominal size is 5%. The number of Monte Carlo replications is 5,000. The

domain for r is discretized: r = [0 : 0.001 : 1]. We use the critical values reported in Table 1, Panel A, to

calculate the empirical rejection frequencies.

Table 5: Correct Specification Tests for SPF’s Probability Forecasts

Series Name: GDP Growth GDP Deflator Growth

κP CP κP CP

Current-year Forecasts 1.534* 0.773* 3.979* 5.066*

One-year-ahead Forecasts 0.821 0.110 3.734* 5.890*

Note: Asterisks ‘*’indicate rejection at 5% significance level based on the critical values in Theorem 2

(reported in Table 1, Panel A). The domain for r is discretized: r = [0 : 0.001 : 1].

39



Figure 1. Fan Charts from a Representative Model in 2000:IV
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Note: The figure shows fan charts obtained by estimating the Smets and Wouters’(2007) model with

data up to 2000:IV, prior to the 2001:II-2001:IV recession. The shaded areas depict the deciles of the

forecast distribution for one- to four-quarter-ahead out-of-sample forecasts. The solid line represents the

median forecast, while the dash-dotted line represents the actual realizations of the data.

Figure 2. CDF of the PITs —SPF Probability Forecast

Panel A: GDP Growth
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Panel B: GDP Deflator Growth
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Note: The figure shows the empirical CDF of the PITs (solid line), the CDF of the PITs under the null

hypothesis (the 45 degree line) and the 5% critical values bands based on the κP test reported in Table 1,

Panel A.
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Figure 3. Histogram of the PITs —SPF Probability Forecast

Panel A: GDP Growth
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Panel B: GDP Deflator Growth
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Note: The figures show the histograms of the PITs (normalized) and the 95% confidence interval ap-

proximated by Diebold et al.’s (1998) binomial distribution (dashed lines), constructed using a Normal

approximation.
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Figure 4. Mean and Quantiles of the SPF Inflation Density Forecast
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Note: The figures plot quantiles of the SPF density forecast over time. The quantiles are constructed

based on a normality assumption on the average SPF density forecasts at each point in time.

Figure 5: Forecast Evaluation of Bias-adjusted SPF Inflation
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Notes: The figures show quantiles of the SPF density forecast of next year’s inflation (left panel), as well

as the test of correct calibration (right panel) after the correction to account for the average bias of the SPF

in the observed sample.
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