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Abstract
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usefulness of the new methodology for understanding the causes of the poor forecasting
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1 Introduction

This paper has two objectives. The first objective is to propose a new methodology for un-

derstanding why models have different forecasting performance. Is it because the forecasting

performance has changed over time? Or is it because there is estimation uncertainty which

makes models’ in-sample fit not informative about their out-of-sample forecasting ability?

We identify three possible sources of models’ forecasting performance: predictive content,

over-fitting, and time-varying forecasting ability. Predictive content indicates whether the

in-sample fit predicts out-of-sample forecasting performance. Over-fitting is a situation in

which a model includes irrelevant regressors, which improve the in-sample fit of the model

but penalize the model in an out-of-sample forecasting exercise. Time-varying forecasting

ability might be caused by changes in the parameters of the models, as well as by unmod-

eled changes in the stochastic processes generating the variables. Our proposed technique

involves a decomposition of the existing measures of forecasting performance into these com-

ponents to understand the reasons why a model forecasts better than its competitors. We

also propose tests for assessing the significance of each component. Thus, our methodology

suggests constructive ways of improving models’ forecasting ability.

The second objective is to apply the proposed methodology to study the performance

of models of exchange rate determination in an out-of-sample forecasting environment. Ex-

plaining and forecasting nominal exchange rates with macroeconomic fundamentals has long

been a struggle in the international finance literature. We apply our methodology in order

to better understand the sources of the poor forecasting ability of the models. We focus

on models of exchange rate determination in industrialized countries such as Switzerland,

United Kingdom, Canada, Japan, and Germany. Similarly to Bacchetta, van Wincoop and

Beutler (2010), we consider economic models of exchange rate determination that involve

macroeconomic fundamentals such as oil prices, industrial production indices, unemploy-

ment rates, interest rates, and money differentials. The empirical findings are as follows.
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Exchange rate forecasts based on the random walk are superior to those of economic models

on average over the out-of-sample period. When trying to understand the reasons for the

inferior forecasting performance of the macroeconomic fundamentals, we find that lack of

predictive content is the major explanation for the lack of short-term forecasting ability of

the economic models, whereas instabilities play a role especially for medium term (one-year

ahead) forecasts.

Our paper is closely related to the rapidly growing literature on forecasting (see Elliott

and Timmermann (2008) for reviews and references). In their seminal works, Diebold and

Mariano (1995) and West (1996) proposed tests for comparing the forecasting ability of

competing models, inspiring a substantial research agenda that includes West and McCracken

(1998), McCracken (2000), Clark and McCracken (2001, 2005, 2006), Clark and West (2006)

and Giacomini and White (2006), among others. None of these works, however, analyze

the reasons why the best model outperforms its competitors. In a recent paper, Giacomini

and Rossi (2009) propose testing whether the relationship between in-sample predictive

content and out-of-sample forecasting ability for a given model has worsened over time,

and refer to such situations as Forecast Breakdowns. Interestingly, Giacomini and Rossi

(2009) show that Forecast Breakdowns may happen because of instabilities and over-fitting.

However, while their test detects both instabilities and over-fitting, in practice it cannot

identify the exact source of the breakdown. The main objective of our paper is instead

to decompose the forecasting performance in components that shed light on the causes of

the models’ forecast advantages/disadvantages. We study such decomposition in the same

framework of Giacomini and Rossi (2010), that allows for time variation in the forecasting

performance, and discuss its implementation in fixed rolling window as well as recursive

window environments.

The rest of the paper is organized as follows. Section 2 describes the framework and the

assumptions, Section 3 discusses the new decomposition proposed in this paper, and Section

4 presents the relevant tests. Section 5 provides a simple Monte Carlo simulation exercise,
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whereas Section 6 attempts to analyze the causes of the poor performance of models for

exchange rate determination. Section 7 concludes.

2 The Framework and Assumptions

Since the works by Diebold and Mariano (1995), West (1996), and Clark and McCracken

(2001), it has become common to compare models according to their forecasting performance

in a pseudo out-of-sample forecasting environment. Let h ≥ 1 denote the (finite) forecast

horizon. We are interested in evaluating the performance of h−steps ahead forecasts for the

scalar variable yt using a vector of predictors xt, where forecasts are obtained via a direct

forecasting method.1 We assume the researcher has P out-of-sample predictions available,

where the first out-of-sample prediction is based on a parameter estimated using data up to

time R, the second prediction is based on a parameter estimated using data up to R + 1,

and the last prediction is based on a parameter estimated using data up to R+ P − 1 = T,

where R + P + h− 1 = T + h is the size of the available sample.

The researcher is interested in evaluating model(s)’ pseudo out-of-sample forecasting per-

formance, and comparing it with a measure of in-sample fit so that the out-of-sample forecast-

ing performance can be ultimately decomposed into components measuring the contribution

of time-variation, over-fitting, and predictive content. Let {Lt+h (.)}Tt=R be a sequence of loss

functions evaluating h−steps ahead out-of-sample forecast errors. This framework is general

enough to encompass:

(i) measures of absolute forecasting performance, where Lt+h (.) is the forecast error loss

of a model;

(ii) measures of relative forecasting performance, where Lt+h (.) is the difference of the

forecast error losses of two competing models; this includes, for example, the measures of

relative forecasting performance considered by Diebold and Mariano (1995) and West (1996);

1That is, h−steps ahead forecasts are directly obtained by using estimates from the direct regression of
the dependent variable on the regressors lagged h−periods.
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(iii) measures of regression-based predictive ability, where Lt+h (.) is the product of the

forecast error of a model times possible predictors; this includes, for example, Mincer and

Zarnowitz’s (1969) measures of forecast efficiency. For an overview and discussion of more

general regression-based tests of predictive ability see West and McCracken (1998).

To illustrate, we provide examples of all three measures of predictive ability. Consider

an unrestricted model specified as yt+h = x′
tα + εt+h, and a restricted model: yt+h = εt+h.

Let α̂t be an estimate of the regression coefficient of the unrestricted model at time t using

all the observations available up to time t, i.e. α̂t =

(
t−h∑
j=1

xjx
′
j

)−1(
t−h∑
j=1

xjyj+h

)
.

(i) Under a quadratic loss function, the measures of absolute forecasting performance

for model 1 and 2 would be the squared forecast errors: Lt+h (.) = (yt+h − x′
tα̂t)

2 and

Lt+h (.) = y2t+h respectively.

(ii) Under the same quadratic loss function, the measure of relative forecasting perfor-

mance of the models in (i) would be Lt+h (.) = (yt+h − x′
tα̂t)

2 − y2t+h.

(iii) An example of a regression-based predictive ability test is the test of zero mean

prediction error, where, for the unrestricted model: Lt+h (.) = yt+h − x′
tα̂t.

Throughout this paper, we focus on measures of relative forecasting performance. Let

the two competing models be labeled 1 and 2, which could be nested or non-nested. Model 1

is characterized by parameters α and model 2 by parameters γ. We consider two estimation

frameworks: a fixed rolling window and an expanding (or recursive) window.

2.1 Fixed Rolling Window Case

In the fixed rolling window case, the model’s parameters are estimated using samples of R

observations dated t − R + 1, ..., t, for t = R, R + 1, ..., T , where R < ∞. The parameter

estimates for model 1 are obtained by α̂t,R = argmina

t∑
j=t−R+1

L(1)
j (a), where L(1) (.) denotes

the in-sample loss function for model 1; similarly, the parameters for model 2 are γ̂t,R =

argming

t∑
j=t−R+1

L(2)
j (g) . At each point in time t, the estimation will generate a sequence
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of R in-sample fitted errors denoted by {η1,j (α̂t,R) , η2,j(γ̂t,R)}tj=t−R+1; among the R fitted

errors, we use the last in-sample fitted errors at time t, (η1,t (α̂t,R) , η2,t(γ̂t,R)), to evaluate the

models’ in-sample fit at time t, L(1)
t (α̂t,R) and L(2)

t (γ̂t,R). For example, for the unrestricted

model considered previously, yt+h = x′
tα + εt+h, under a quadratic loss, we have α̂t,R =

(
t−h∑

j=t−h−R+1

xjx
′
j)

−1 (
t−h∑

j=t−h−R+1

xjyj+h), for t = R, R + 1, ..., T. The sequence of in-sample

fitted errors at time t is: {η1,j (α̂t,R)}tj=t−R+1 =
{
yj − x′

j−hα̂j,R

}t
j=t−R+1

, of which we use the

last in-sample fitted error, η1,t (α̂t,R) = yt−x′
t−hα̂t,R, to evaluate the in-sample loss at time t :

L(1)
t (α̂t,R) ≡

(
yt − x′

t−hα̂t,R

)2
. Thus, as the rolling estimation is performed over the sample

for t = R, R + 1, ..., T , we collect a series of in-sample losses:
{
L(1)

t (α̂t,R),L(2)
t (γ̂t,R)

}T

t=R
.

We consider the loss functions L
(1)
t+h(α̂t,R) and L

(2)
t+h(γ̂t,R) to evaluate out-of-sample predic-

tive ability of direct h-step ahead forecasts for models 1 and 2 made at time t. For example,

for the unrestricted model considered previously (yt+h = x′
tα+ εt+h), under a quadratic loss,

the out-of-sample multi-step direct forecast loss at time t is: L
(1)
t+h(α̂t,R) ≡ (yt+h − x′

tα̂t,R)
2.

As the rolling estimation is performed over the sample, we collect a series of out-of-sample

losses:
{
L

(1)
t+h(α̂t,R), L

(2)
t+h(γ̂t,R)

}T

t=R
.

The loss function used for estimation need not necessarily be the same loss function

used for forecast evaluation, although in order to ensure a meaningful interpretation of the

models’ in-sample performance as a proxy for the out-of-sample performance, we require the

loss function used for estimation to be the same as the loss used for forecast evaluation.

Assumption 4(a) in Section 3 will formalize this requirement.

Let θ ≡ (α′, γ′)′ be the (p× 1) parameter vector, θ̂t,R ≡
(
α̂′
t,R, γ̂

′
t,R

)′
, Lt+h

(
θ̂t,R

)
≡

L
(1)
t+h(α̂t,R)− L

(2)
t+h(γ̂t,R) and Lt

(
θ̂t,R

)
≡ L(1)

t (α̂t,R)− L(2)
t (γ̂t,R). For notational simplicity, in

what follows we drop the dependence on the parameters, and simply use L̂t+h and L̂t to

denote Lt+h(θ̂t,R) and Lt(θ̂t,R) respectively.
2

We make the following Assumption.

2Even if we assume that the loss function used for estimation is the same as the loss function used for
forecast evaluation, the different notation for the estimated in-sample and out-of-sample losses (L̂t and L̂t)
is necessary to reflect that they are evaluated at parameters estimated at different points in time.
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Assumption 1: Let l̂t+h ≡
(
L̂t+h, L̂tL̂t+h

)′
, t = R, ..., T , and Zt+h,R ≡ l̂t+h − E(l̂t+h).

(a) Ωroll ≡ lim
T→∞

V ar
(
P−1/2

∑T
t=R Zt+h,R

)
is positive definite;

(b) for some r > 2, ||[Zt+h,R, L̂t]||r < ∆ < ∞;3

(c) {yt, xt} are mixing with either {ϕ} of size −r/2 (r − 1) or {α} of size −r/(r − 2);

(d) for k ∈ [0, 1] , lim
T→∞

E
[
WP (k)WP (k)′

]
= kI2, where WP (k) =

∑R+[kP ]
t=R Ω

−1/2
roll Zt+h,R;

(e) P → ∞ as T → ∞, whereas R < ∞, h < ∞.

Remarks. Assumption 1 is useful for obtaining the limiting distribution of the statistics

of interest, and provides the necessary assumptions for the high-level assumptions that guar-

antee that a Functional Central Limit Theorem holds, as in Giacomini and Rossi (2010).

Assumptions 1(a-c) impose moment and mixing conditions to ensure that a Multivariate

Invariance Principle holds (Wooldridge and White, 1988). In addition, Assumption 1(d)

imposes global covariance stationarity. The assumption allows for the competing models to

be either nested or non-nested and to be estimated with general loss functions. This gen-

erality has the trade-off of restricting the estimation to a fixed rolling window scheme, and

Assumption 1(e) ensures that the parameter estimates are obtained over an asymptotically

negligible in-sample fraction of the data (R).4

Proposition 1 (Asymptotic Results for the Fixed Rolling Window Case ) For ev-

ery k ∈ [0, 1] , under Assumption 1:

1√
P

R+[kP ]∑
t=R

Ω
−1/2
roll

[
l̂t+h − E(l̂t+h)

]
⇒ W (k) , (1)

where W (.) is a (2× 1) standard vector Brownian Motion.

3Hereafter, ||.|| denotes the Euclidean norm.
4Note that researchers might also be interested in a rolling window estimation case where the size of

the rolling window is ”large” relative to the sample size. In this case, researchers may apply the Clark and
West’s (2006, 2007) test, and obtain results similar to those above. However, using Clark and West’s test
would have the drawback of eliminating the over-fitting component, which is the focus of this paper.
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Comment. A consistent estimate of Ωroll can be obtained by

Ω̂roll =

q(P )−1∑
i=−q(P )+1

(1− |i/q(P )|)P−1

T∑
t=R

l̂dt+hl̂
d′
t+h, (2)

where l̂dt+h ≡ l̂t+h − P−1
∑T

t=R l̂t+h and q(P ) is a bandwidth that grows with P (Newey and

West, 1987).

2.2 Expanding Window Case

In the expanding (or recursive) window case, the forecasting environment is the same

as in Section 2.1, with the following exception. The parameter estimates for model 1

are obtained by α̂t,R = argmina

t∑
j=1

L(1)
j (a); similarly, the parameters for model 2 are

γ̂t,R = argming

t∑
j=1

L(2)
j (g). Accordingly, the first prediction is based on a parameter vector

estimated using data from 1 to R, the second on a parameter vector estimated using data

from 1 to R + 1, ..., and the last on a parameter vector estimated using data from 1 to

R+P − 1 = T . Let θ̂t,R denote the estimate of the parameter θ based on data from period t

and earlier. For example, for the unrestricted model considered previously, yt+h = x′
tα+εt+h,

we have: α̂t,R = (
t−h∑
j=1

xjx
′
j)

−1 (
t−h∑
j=1

xjyj+h), for t = R, R+1, ..., T, L
(1)
t+h(α̂t,R) ≡ (yt+h − x′

tα̂t,R)
2

and L(1)
t (α̂t,R) ≡

(
yt − x′

t−hα̂t,R

)2
. Finally, let Lt+h ≡ Lt+h(θ

∗), Lt ≡ Lt(θ
∗), where θ∗ is the

pseudo-true parameter value.

We make the following Assumption.

Assumption 2: Let l̂t+h ≡
(
L̂t+h, L̂tL̂t+h

)′
, lt+h ≡ (Lt+h,LtLt+h)

′ .

(a) R,P → ∞ as T → ∞, and lim
T→∞

(P/R) = π ∈ [0,∞), h < ∞;

(b) In some open neighborhood N around θ∗, and with probability one, Lt+h (θ) ,Lt (θ)

are measurable and twice continuously differentiable with respect to θ. In addition, there is

a constant K < ∞ such that for all t, supθ∈N |∂2lt (θ) /∂θ∂θ
′| < Mt for which E (Mt) < K.

(c) θ̂t,R satisfies θ̂t,R − θ∗ = JtHt, where Jt is (p × q), Ht is (q × 1), Jt →
as

J, with J of
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rank p; Ht = t−1
t∑

s=1

hs for a (q × 1) orthogonality condition vector hs ≡ hs (θ
∗) ; E(hs) = 0.

(d) Let Dt+h ≡ ∂lt+h(θ)

∂θ
|θ=θ∗, D ≡ E (Dt+h) and ξt+h ≡

[
vec (Dt+h)

′ , l′t+h, h
′
t,Lt

]′
. Then:

(i) For some d > 1, suptE ||ξt+h||4d < ∞. (ii) ξt+h − E (ξt+h) is strong mixing, with mix-

ing coefficients of size −3d/ (d− 1). (iii) ξt+h − E (ξt+h) is covariance stationary. (iv) Let

Γll (j) = E (lt+h − E(lt+h)) (lt+h−j − E(lt+h))
′ , Γlh (j) = E (lt+h − E(lt+h)) (ht−j − E(ht))

′ ,

Γhh (j) = E (ht − E(ht)) (ht−j − E(ht))
′ , Sll =

∞∑
j=−∞

Γll (j) , Slh =
∞∑

j=−∞
Γlh (j) , Shh =

∞∑
j=−∞

Γhh (j) , S =

 Sll SlhJ
′

JS ′
lh JShhJ

′

 . Then Sll is positive definite.

Assumption 2(a) allows both R and P to grow as the total sample size grows; this is a

special feature of the expanding window case.5 Assumption 2(b) ensures that the relevant

losses are well approximated by smooth quadratic functions in the neighborhood of the

parameter vector, as in West (1996). Assumption 2(c) is specific to the recursive window

estimation procedure, and requires that the parameter estimates be obtained over recursive

windows of data.6 Assumption 2(d,i-iv) imposes moment conditions that ensure the validity

of the Central Limit Theorem, as well as covariance stationarity for technical convenience.

As in West (1996), positive definiteness of Sll rules out the nested model case.7 Thus, for

nested model comparisons, we recommend the rolling window scheme discussed in Section

2.1.

There are two important cases where the asymptotic theory for the recursive window

case simplifies. These are cases in which the estimation uncertainty vanishes asymptotically.

A first case is when π = 0, which implies that estimation uncertainty is irrelevant since there

is an arbitrary large number of observations used for estimating the models’ parameters, R,

relative to the number used to estimate E (lt+h), P . The second case is when D = 0. A

5This also implies that the probability limit of the parameter estimates are constant, at least under the
null hypothesis.

6In our example: Jt = ( 1t

t−h∑
j=1

xjx
′
j)

−1
and Ht =

1
t

t−h∑
j=1

xjyj+h.

7The extension of the expanding window setup to nested models would require using non-normal distri-
butions for which the Functional Central Limit Theorem cannot be easily applied.
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leading case that ensures D = 0 is the quadratic loss (i.e. the Mean Squared Forecast Error)

and i.i.d. errors. Proposition 2 below considers the case of vanishing estimation uncertainty.

Proposition 5 in Appendix A provides results for the general case in which either π ̸= 0 or

D ̸= 0. Both propositions are formally proved in Appendix B.

Proposition 2 (Asymptotic Results for the Recursive Window Case ) For every k ∈

[0, 1] , under Assumption 2, if π = 0 or D = 0 then

1√
P

R+[kP ]∑
t=R

Ω−1/2
rec

[
l̂t+h − E (lt+h)

]
⇒ W (k) ,

where Ωrec = Sll, and W (.) is a (2× 1) standard vector Brownian Motion.

Comment. Upon mild strengthening of the assumptions on ht as in Andrews (1991), a

consistent estimate of Ωrec can be obtained by

Ω̂rec =

q(P )−1∑
i=−q(P )+1

(1− |i/q(P )|)P−1

T∑
t=R

l̂dt+hl̂
d′
t+h, (3)

where l̂dt+h ≡ l̂t+h − P−1
∑T

t=R l̂t+h and q(P ) is a bandwidth that grows with P (Newey and

West, 1987).

3 Understanding the Sources of Models’ Forecasting

Performance: A Decomposition

Existing forecast comparison tests, such as Diebold and Mariano (1995) and West (1996),

inform the researcher only about which model forecasts best, and do not shed any light

on why that is the case. Our main objective, instead, is to decompose the sources of the

out-of-sample forecasting performance into uncorrelated components that have meaningful
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economic interpretation, and might provide constructive insights to improve models’ fore-

casts. The out-of-sample forecasting performance of competing models can be attributed to

model instability, over-fitting, and predictive content. Below we elaborate on each of these

components in more detail.

We measure time variation in models’ relative forecasting performance by averaging rel-

ative predictive ability over rolling windows of size m, as in Giacomini and Rossi (2010),

where m < P satisfies assumption 3 below.

Assumption 3: lim
T→∞

(m/P ) → µ ∈ (0,∞) as m,P → ∞.

We define predictive content as the correlation between the in-sample and out-of-sample

measures of fit. When the correlation is small, the in-sample measures of fit have no pre-

dictive content for the out-of-sample and vice versa. An interesting case occurs when the

correlation is strong, but negative. In this case the in-sample predictive content is strong yet

misleading for the out-of-sample. We define over-fitting as a situation in which a model fits

well in-sample but loses predictive ability out-of-sample; that is, where in-sample measures

of fit fail to be informative regarding the out-of-sample predictive content.

To capture predictive content and over-fitting, we consider the following regression:

L̂t+h = βL̂t + ut+h for t = R,R + 1, ..., T. (4)

Let β̂ ≡
(

1
P

T∑
t=R

L̂2
t

)−1(
1
P

T∑
t=R

L̂tL̂t+h

)
denote the OLS estimate of β in regression (4), β̂L̂t

and ût+h denote the corresponding fitted values and regression errors. Note that L̂t+h =

β̂L̂t + ût+h. In addition, regression (4) does not include a constant, so that the error term

measures the average out-of-sample losses not explained by in-sample performance. Then,

the average Mean Square Forecast Error (MSFE) can be decomposed as:

1

P

T∑
t=R

L̂t+h = BP + UP , (5)
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where BP ≡ β̂

(
1
P

T∑
t=R

L̂t

)
and UP ≡ 1

P

T∑
t=R

ût+h. BP can be interpreted as the component

that was predictable on the basis of the in-sample relative fit of the models (predictive

content), whereas UP is the component that was unexpected (over-fitting).

The following example provides more details on the interpretation of the components

measuring predictive content and over-fitting.

Example: Let the true data generating process (DGP) be yt+h = α + εt+h, where

εt+h ∼ iidN (0, σ2). We compare the forecasts of yt+h from two nested models’ made

at time t based on parameter estimates obtained via the fixed rolling window approach.

The first (unrestricted) model includes a constant only, so that its forecasts are α̂t,R =

1
R

∑t−h
j=t−h−R+1 yj+h, t = R, R+1, ..., T, and the second (restricted) model sets the constant

to be zero, so that its forecast is zero. Consider the (quadratic) forecast error loss difference,

L̂t+h ≡ L
(1)
t+h(α̂t,R) − L

(2)
t+h(0) ≡ (yt+h − α̂t,R)

2 − y2t+h, and the (quadratic) in-sample loss

difference L̂t ≡ L(1)
t (α̂t,R)− L(2)

t (0) ≡ (yt − α̂t,R)
2 − y2t .

Let β ≡ E
(
L̂t+hL̂t

)
/E
(
L̂ 2

t

)
. It can be shown that

β = (α4 + 4σ2α2 + (4σ2 + 2σ2α2)/R)−1(α4 − 3σ2/R2).8 (6)

When the models are nested, in small samples E(L̂t) = −(α2 + σ2/R) < 0, as the in-

sample fit of the larger model is always better than that of the small one. Consequently,

E(BP ) = βE(L̂t) = 0 only when β = 0. The calculations show that the numerator for β has

two distinct components: the first, α4, is an outcome of the mis-specification in model 2; the

other, 3σ2/R2, changes with the sample size and “captures” estimation uncertainty in model

8E(L̂t+hL̂t) = E((−2ϵt+h(
∑t−h

j=t−h−R+1 ϵj+h)/R+ (
∑t−h

j=t−h−R+1 ϵj+h)
2/R2 − α2 − 2αϵt+h)

(−2ϵt(
∑t−h

j=t−h−R+1 ϵj+h)/R+ (
∑t−h

j=t−h−R+1 ϵj+h)
2/R2 − α2 − 2αϵt)) = α4 − 3σ4/R2, where the derivation

of the last part relies on the assumptions of normality and iid for the error terms in that E(ϵt) = 0, E(ϵ2t ) =
σ2, E(ϵ3t ) = 0, E(ϵ4t ) = 3σ4 and, when j > 0, then E(ϵ2t+jϵ

2
t ) = σ4, E(ϵt+jϵt) = 0. In addition, it is

useful to note that E((
∑t

j=1 ϵj)
4) = tE(ϵ4t ) + t(t − 1)(σ2)2 + 4

∑t−1
j=1(σ

2)2 = tE(ϵ4t ) + 3t(t − 1)σ4 = 3t2σ4,

E((
∑t

j=1 ϵj)
3) = 0, and E((ϵt

∑t
j=1 ϵj)

3) = E(ϵ4t ) + 3(t− 1)σ4. The expression for the denominator can be
derived similarly.
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1. When the two components are equal to each other, the in-sample loss differences have no

predictive content for the out-of-sample. When the mis-specification component dominates,

then the in-sample loss differences provide information content for the out-of-sample. On

the other hand, when β is negative, though the in-sample fit has predictive content for the

out-of-sample, it is misleading in that it is driven primarily by the estimation uncertainty.

For any given value of β, E(BP ) = βE(L̂t) = −β(α2 + σ2/R), where β is defined in eq. (6).

By construction, E(UP ) = E(L̂t+h)−E(BP ) = (σ2/R−α2)−E(BP ). Similar to the case

of BP , the component designed to measure over-fitting is affected by both mis-specification

and estimation uncertainty. One should note that for β > 0, the mis-specification component

affects both E(BP ) and E(UP ) in a similar direction, while the estimation uncertainty moves

them in opposite directions. Estimation uncertainty penalizes the predictive content BP and

makes the unexplained component UP larger.9

To ensure a meaningful interpretation of models’ in-sample performance as a proxy for

the out-of-sample performance, we assume that the loss used for in-sample fit evaluation is

the same as that used for out-of-sample forecast evaluation. This assumption is formalized

in Assumption 4(a). Furthermore, our proposed decomposition depends on the estimation

procedure. Parameters estimated in expanding windows converge to their pseudo-true values

so that, in the limit, expected out-of-sample performance is measured by Lt+h ≡ E (Lt+h)

and expected in-sample performance is measured by Lt ≡ E (Lt); we also define LLt,t+h ≡

E (LtLt+h). However, for parameters estimated in fixed rolling windows the estimation

uncertainty remains asymptotically relevant, so that expected out-of-sample performance

is measured by Lt+h ≡ E(L̂t+h), and the expected in-sample performance is measured by

Lt ≡ E(L̂t), and LLt,t+h ≡ E(L̂tL̂t+h). We focus on the relevant case where the models’

have different in-sample performance. This assumption is formalized in Assumption 4(b).

9Note that E(L̂t) = σ2/R − α2, whereas E(L̂t) = −σ2/R − α2. Thus, the same estimation uncertainty
component σ2/R penalizes model 2 in-sample and at the same time improves model 2’s performance out-
of-sample (relative to model 1). This result was shown by Hansen (2008), who explores its implications for
information criteria. This paper differs by Hansen (2008) in a fundamental way by focusing on a decompo-
sition of the out-of-sample forecasting ability into separate and economically meaningful components.
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The assumption is always satisfied in small-samples for nested models, and it is also trivially

satisfied for measures of absolute performance.

Assumption 4: (a) For every t, Lt (θ) = Lt (θ); (b) lim
T→∞

1
P

T∑
t=R

Lt ̸= 0.

Let λ ∈ [µ, 1]. For τ = [λP ] we propose to decompose the out-of-sample loss function

differences
{
L̂t+h

}T

t=R
calculated in rolling windows of size m into their difference relative to

the average loss, Aτ,P , an average forecast error loss expected on the basis of the in-sample

performance, BP , and an average unexpected forecast error loss, UP . We thus define:

Aτ,P =
1

m

R+τ−1∑
t=R+τ−m

L̂t+h −
1

P

T∑
t=R

L̂t+h,

BP =

(
1

P

T∑
t=R

L̂t

)
β̂,

UP =
1

P

T∑
t=R

ût+h,

where BP , UP are estimated from regression (4).

The following assumption states the hypotheses that we are interested in:

Assumption 5: Let Aτ,P ≡ E (Aτ,P ) , BP ≡ βLt, and UP ≡ Lt+h − βLt. The following

null hypotheses hold:

H0,A : Aτ,P = 0 for all τ = m,m+ 1, ...P, (7)

H0,B : BP = 0, (8)

H0,U : UP = 0. (9)

Proposition 3 provides the decomposition for both rolling and recursive window estima-

tion schemes.

Proposition 3 (The Decomposition ) Let either (a) [Fixed Rolling Window Estimation]

Assumptions 1,3,4 hold; or (b) [Recursive Window Estimation] Assumptions 2,3,4 hold and

14



either D = 0 or π = 0. Then, for λ ∈ [µ, 1] and τ = [λP ]:

1

m

R+τ−1∑
t=R+τ−m

[L̂t+h − Lt+h] =
(
Aτ,P − Aτ,P

)
+
(
BP −BP

)
+
(
UP − UP

)
. (10)

Under Assumption 5, Aτ,P , BP , UP are asymptotically uncorrelated, and provide a decompo-

sition of the out-of-sample measure of forecasting performance, 1
m

R+τ−1∑
t=R+τ−m

[L̂t+h − Lt+h].

Appendix B proves that Aτ,P , BP and UP are asymptotically uncorrelated. This im-

plies that (10) provides a decomposition of rolling averages of out-of-sample losses into a

component that reflects the extent of instabilities in the relative forecasting performance,

Aτ,P , a component that reflects how much of the average out-of-sample forecasting ability

was predictable on the basis of the in-sample fit, BP , and how much it was unexpected, UP .

In essence, BP + UP is the average forecasting performance over the out-of-sample period

considered by Diebold and Mariano (1995) and West (1996), among others.

To summarize, Aτ,P measures the presence of time variation in the models’ performance

relative to their average performance. In the presence of no time variation in the expected

relative forecasting performance, Aτ,P should equal zero. When instead the sign of Aτ,P

changes, the out-of-sample predictive ability swings from favoring one model to favoring the

other model. BP measures the models’ out-of-sample relative forecasting ability reflected in

the in-sample relative performance. When BP has the same sign as 1
P

T∑
t=R

L̂t+h, this suggests

that in-sample losses have predictive content for out-of-sample losses. When they have the

opposite sign, there is predictive content, although it is misleading because the out-of-sample

performance will be the opposite of what is expected on the basis of in-sample information.

UP measures models’ out-of-sample relative forecasting ability not reflected by in-sample fit,

which is our definition of over-fitting.

Similar results hold for the expanding window estimation scheme in the more general

case where either π ̸= 0 or D ̸= 0. Proposition 6, discussed in Appendix A and proved

in Appendix B, demonstrates that the only difference is that, in the more general case,
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the variance changes as a deterministic function of the point in time in which forecasts are

considered, which requires a decomposition normalized by the variances.

4 Statistical Tests

This section describes how to test the statistical significance of the three components in

decompositions (10) and (20). Let σ2
A ≡ lim

T→∞
V ar(P−1/2

T∑
t=R

L̂t+h), σ
2
B ≡ lim

T→∞
V ar

(
P 1/2BP

)
,

σ2
U ≡ lim

T→∞
V ar

(
P 1/2UP

)
, and σ̂2

A, σ̂
2
B, σ̂

2
U be consistent estimates of σ2

A, σ
2
B and σ2

U (such as

described in Proposition 4). Also, let Ω̂(i,j),roll and Ω̂(i,j),rec denote the (i-th,j-th) element of

Ω̂roll and Ω̂rec, for Ω̂roll defined in eq.(2) and for Ω̂rec defined in eq.(3).

Proposition 4 provides test statistics for evaluating the significance of the three compo-

nents in decomposition (10).

Proposition 4 (Significance Tests ) Let either: (a) [Fixed Rolling Window Estimation]

Assumptions 1,3,4 hold, and σ̂2
A = Ω̂(1,1),roll, σ̂

2
B = Φ2

P Ω̂(2,2),roll; or (b) [Recursive Window

Estimation] Assumptions 2,3,4 hold, and σ̂2
A = Ω̂(1,1),rec, σ̂

2
B = Φ2

P Ω̂(2,2),rec, and either π = 0

or D = 0.

In addition, let Aτ,P , BP , UP be defined as in Proposition 3, and the tests be defined as:

Γ
(A)
P ≡ sup

τ=m,...,P
|
√
Pσ̂−1

A Aτ,P |,

Γ
(B)
P ≡

√
Pσ̂−1

B BP ,

Γ
(U)
P ≡

√
Pσ̂−1

U UP ,

where ΦP ≡
(

1
P

T∑
t=R

L̂t

)(
1
P

T∑
t=R

L̂2
t

)−1

, and σ̂2
U = σ̂2

A − σ̂2
B. Then:

(i) Under H0,A,
√
Pσ̂−1

A Aτ,P ⇒ 1

µ
[W1 (λ)−W1 (λ− µ)]−W1 (1) , (11)

for λ ∈ [µ, 1] and τ = [λP ] , where W1 (·) is a standard univariate Brownian motion. The
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critical values for significance level α are ± kα, where kα solves:

Pr

{
sup

λ∈[µ,1]
|[W1 (λ)−W1 (λ− µ)] /µ−W1 (1)| > kα

}
= α. (12)

Table 1 reports the critical values kα for typical values of α.

(ii) Under H0,B : Γ
(B)
P ⇒ N (0, 1); under H0,U : Γ

(U)
P ⇒ N (0, 1).

The null hypothesis of no time variation (H0,A) is rejected when Γ
(A)
P > kα; the null

hypothesis of no predictive content (H0,B) is rejected when |Γ(B)
P | > zα/2, where zα/2 is

the (α/2)-th percentile of a standard normal; the null hypothesis of no over-fitting (H0,U)

is rejected when |Γ(U)
P | > zα/2. Appendix B provides the formal proof of Proposition 4. In

addition, Proposition 7 in Appendix A provides the generalization of the recursive estimation

case to either π ̸= 0 or D ̸= 0.

5 Monte Carlo Analysis

The objective of this section is twofold. First, we evaluate the performance of the proposed

method in small samples; second, we examine the role of the Aτ,P , BP , and UP components

in the proposed decomposition. The Monte Carlo analysis focuses on the rolling window

scheme used in the empirical application. The number of Monte Carlo replications is 5,000.

We consider two Data Generating Processes (DGP): the first is the simple example dis-

cussed in Section 3; the second is tailored to match the empirical properties of the Canadian

exchange rate and money differential data considered in Section 6. Let

yt+h = αtxt + et+h, t = 1, 2, ..., T, (13)

where h = 1 and either: (i) (IID) et ∼ iid N (0, σ2
ε), σ

2
ε = 1, xt = 1, or (ii) (Serial Correlation)

et = ρet−1 + εt, ρ = −0.0073, εt ∼ iid N (0, σ2
ε), σ

2
ε = 2.6363, xt = b1 +

∑6
s=2 bsxt−s+1 + vt,
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vt ∼ iid N (0, 1) independent of εt and b1 = 0.1409, b2 = −0.1158, b3 = 0.1059, b4 = 0.0957,

b5 = 0.0089, b6 = 0.1412.

We compare the following two nested models’ forecasts for yt+h:

Model 1 forecast : α̂txt

Model 2 forecast : 0,

where model 1 is estimated by OLS in rolling windows, α̂t =
(
Σt−h

j=t−h−R+1xjyj+h

) (
Σt−h

j=t−h−R+1x
2
j

)−1

for t = R, ..., T.

We consider the following cases. The first DGP (DGP 1) is used to evaluate the size

properties of our procedures in small samples. We let αt = α, where: (i) for the IID case, α =

σeR
−1/2 satisfiesH0,A, α = σe (3R

−2)
1/4

satisfiesH0,B, and α = 1
R
σe

(√
−3R +R2 + 1 + 1

)1/2
satisfies H0,U ;

10 (ii) for the correlated case, the values of α ∈ R satisfying the null hypotheses

were calculated via Monte Carlo approximations, and σ2
e = σ2

ε/ (1− ρ2).11 A second DGP

(DGP 2) evaluates the power of our procedures in the presence of time variation in the

parameters: we let αt = α +b · cos(1.5πt/T ) ·(1 − t/T ), where b = {0, 0.1, ..., 1}. A third

DGP (DGP 3) evaluates the power of our tests against stronger predictive content. We let

αt = α + b, for b = {0, 0.1, ..., 1}. Finally, a fourth DGP (DGP 4) evaluates our procedures

against over-fitting. We let Model 1 include (p− 1) redundant regressors and its forecast for

yt+h is specified as: α̂txt+
p−1∑
s=1

γ̂s+1,txs,t, where x1,t, ..., xp−1,t are (p− 1) independent standard

10The values of α satisfying the null hypotheses can be derived from the Example in Section 3.

11In detail, let δt =
(
Σt−h

j=t−h−R+1x
2
j

)−1 (
Σt−h

j=t−h−R+1xjεj+h

)2
. Then, α = E

(
δ2t
)
is the value that

satisfies H0,A when ρ is small, and the expectation is approximated via Monte Carlo simulations. Similarly,
H0,B sets α = − 1

2A

(
B −

√
−4AD +B2

)
, where A = E

(
x2
tx

2
t−h

)
, B = 2

[
E
(
δtetxt−hx

2
t

)
− E

(
δ2t x

2
tx

2
t−h

)]
,

C =
[
−2E

(
δ2t etxt−hx

2
t

)]
= 0, D = E

(
δ4t x

2
tx

2
t−h

)
− 2E

(
δ3t etxt−hx

2
t

)
. H0,U instead sets α ∈ R

s.t. Gα6 + Hα4 + Lα2 + M = 0, where G =
{
E
(
x2
t−h

)
E
(
x2
tx

2
t−h

)
− E

(
x2
t

)
E
(
x4
t−h

)}
,

H = 2E
(
x2
t−h

) [
E
(
δtetxt−hx

2
t

)
− E

(
δ2t x

2
tx

2
t−h

)]
− 2E

(
x2
t

) [
2E
(
x3
t−hetδt

)
− E

(
x4
t−hδ

2
t

)
+ 2E

(
e2tx

2
t−h

)]
+E

(
x2
tx

2
t−h

) [
2E (etxt−hδt)− E

(
x2
t−hδ

2
t

)]
+ Ex4

t−hE
(
δ2t x

2
t

)
, L = [2E

(
δtetxt−hx

2
t

)
−

2E
(
δ2t x

2
tx

2
t−h

)
][2E (etxt−hδt) − E

(
x2
t−hδ

2
t

)
] +E

(
x2
t−h

)
[E
(
δ4t x

2
tx

2
t−h

)
−2E

(
δ3t etxt−hx

2
t

)
−4Ee2tx

2
t−hδ

2
t

+4Ex3
t−hetδ

3
t −Ex4

t−hδ
4
t ] +E

(
δ2t x

2
t

)
[4Ex3

t−hetδt−2Ex4
t−hδ

2
t +4Ee2tx

2
t−h], andM = [E

(
δ2t x

2
t

)
][4Ee2tx

2
t−hδ

2
t −

4Ex3
t−hetδ

3
t + Ex4

t−hδ
4
t ] + [E

(
δ4t x

2
tx

2
t−h

)
− 2E

(
δ3t etxt−hx

2
t

)
][2E (etxt−hδt) − E

(
x2
t−hδ

2
t

)
]. We used 5,000

replications.
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normal random variables, whereas the true DGP remains (13) where αt = α, and α takes

the same values as in DGP1.

The results of the Monte Carlo simulations are reported in Tables 2-5. In all tables,

Panel A reports results for the IID case and Panel B reports results for the serial correlation

case. Asymptotic variances are estimated with a Newey West’s (1987) procedure, eq. (2),

with q (P ) = 1 in the IID case and q (P ) = 2 in the Serial Correlation case.

First, we evaluate the small sample properties of our procedure. Table 2 reports empirical

rejection frequencies for DGP 1 for the tests described in Proposition 4 considering a variety

of out-of-sample (P ) and estimation window (R) sizes. The tests have nominal level equal to

0.05, and m = 100. Panel A reports results for the IID case whereas Panel B reports results

for the Serial Correlation case. Therefore, Aτ,P , BP , and UP should all be statistically

insignificantly different from zero. Table 2 shows indeed that the rejection frequencies of

our tests are close to the nominal level, even in small samples, although serial correlation

introduces mild size distortions.

Second, we study the significance of each component in DGP 2-5. DGP 2 allows the

parameter to change over time in a way that, as b increases, instabilities become more

important. Table 3 shows that the Γ
(A)
P test has power against instabilities. The Γ

(B)
P and

Γ
(U)
P tests are not designed to detect instabilities, and therefore their empirical rejection rates

are close to nominal size.

DGP 3 is a situation in which the parameters are constant, and the information content

in Model 1 becomes progressively better as b increases (the model’s performance is equal to

its competitor in expectation when b = 0). Since the parameters are constant and there are

no other instabilities, the Aτ,P component should not be significantly different from zero,

whereas the BP and UP components should become different from zero when b is sufficiently

different from zero. These predictions are supported by the Monte Carlo results in Table 4.

DGP 4 is a situation in which Model 1 includes an increasing number of irrelevant re-

gressors (p). Table 5 shows that, as p increases, the estimation uncertainty caused by the
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increase in the number of parameters starts penalizing Model 1: its out-of-sample perfor-

mance relative to its in-sample predictive content worsens, and BP , UP become significantly

different from zero. On the other hand, Aτ,P is not significantly different from zero, as there

is no time-variation in the models’ relative loss differentials.12

6 The relationship between fundamentals and exchange

rate fluctuations

This section analyzes the link between macroeconomic fundamentals and nominal exchange

rate fluctuations using the new tools proposed in this paper. Explaining and forecasting

nominal exchange rates has long been a struggle in the international finance literature.

Since Meese and Rogoff (1983a,b) first established that the random walk generates the best

exchange rate forecasts, the literature has yet to find an economic model that can consistently

produce good in-sample fit and outperform a random walk in out-of-sample forecasting,

at least at short- to medium-horizons (see e.g. Engel, Mark and West, 2008). In their

papers, Meese and Rogoff (1983a,b) conjectured that sampling error, model mis-specification

and instabilities can be possible explanations for the poor forecasting performance of the

economic models. We therefore apply the methodology presented in Section 2 to better

understand why the economic models’ performance is poor.

We reconsider the forecasting relationship between the exchange rates and economic

fundamentals in a multivariate regression with growth rate differentials of the following

country-specific variables relative to their US counterparts: money supply (Mt), the indus-

trial production index (IPIt), the unemployment rate (URt), and the lagged interest rate

(Rt−1), in addition to the growth rate of oil prices (whose level is denoted by OPt). In addi-

tion, we separately consider the predictive ability of the commodity price index (CP) growth

rate for the Canadian exchange rate. We focus on monthly data from 1975:9 to 2008:9 for

12Unreported results show that the magnitude of the correlation of the three components is very small.
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a few industrial countries, such as Switzerland, United Kingdom, Canada, Japan, and Ger-

many. The data are collected from the IFS, OECD, Datastream, as well as country-specific

sources; see Appendix C for details.

We compare one-step ahead forecasts for the following models. Let yt denote the growth

rate of the exchange rate at time t, yt = [ln(St/St−1)] . The “economic” model is specified

as:

Model 1 : yt = αxt + ϵ1,t, (14)

where xt is the vector containing ln(Mt/Mt−1), ln(IPIt/IPIt−1), ln(URt/URt−1), ln(Rt−1/Rt−2),

and ln(OPt/OPt−1), and ϵ1,t is the error term. In the case of commodity prices, xt contains

only the growth rate of the commodity price index. The benchmark is a simple random

walk:

Model 2 : yt = ε2,t, (15)

where ε2,t is the error term.

First, we follow Bacchetta et al. (2010) and show how the relative forecasting performance

of the competing models is affected by the choice of the rolling estimation window size R.

Let R = 40, ..., 196. Given that our total sample size is fixed (T = 396) and the estimation

window size varies, the out-of-sample period P (R) = T + h−R is not constant throughout

the exercise. Let P = minP (R) = 200 denote the minimum common out-of-sample period

across the various estimation window sizes. One could proceed in two ways. One way is

to average the first P out-of-sample forecast losses, 1
P

∑R+P
t=R L̂t+h. Alternatively, one can

average the last P out-of-sample forecast losses, 1
P

∑T
t=T−P+1 L̂t+h. The difference is that

in the latter case the out-of-sample forecasting period is the same despite the estimation

window size differences, which allows for a fair comparison of the models over the same

forecasting period.

Figures 1 and 2 consider the average out-of-sample forecasting performance of the eco-

nomic model in eq. (14) relative to the benchmark, eq. (15). The horizontal axes report R.
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The vertical axes report the ratio of the mean square forecast errors (MSFEs). Figure 1 de-

picts MSFEModel/MSFERW , where MSFEModel = 1
P

∑R+P
t=R ϵ21,t+h(α̂t,R), and MSFERW =

1
P

∑R+P
t=R ε22,t+h, whereas Figure 2 depicts the ratio of MSFEModel = 1

P

∑T
t=T−P+1 ϵ

2
1,t+h(α̂t,R)

relative to MSFERW = 1
P

∑T
t=T−P+1 ε

2
2,t+h. If the MSFE ratio is greater than one, then the

economic model is performing worse than the benchmark on average. The figures show that

the forecasting performance of the economic model is inferior to that of the random walk for

all the countries except Canada. However, as the estimation window size increases, the fore-

casting performance of the models improves. The degree of improvement deteriorates when

the models are compared over the same out-of-sample period, as shown in Figure 2.13 For

example, in the case of Japan, the model’s average out-of-sample forecasting performance is

similar to that of the random walk starting at R = 110 when compared over the same out-

of-sample forecast periods, while otherwise (as shown in Figure 1), its performance becomes

similar only for R = 200. Figure 1 reflects Bacchetta, van Wincoop and Beutler’s (2010)

findings that the poor performance of economic models is mostly attributed to over-fitting,

as opposed to parameter instability. Figure 2 uncovers instead that the choice of the window

is not crucial, so that over-fitting is a concern only when the window is too small.

Next, we decompose the difference between the MSFEs of the two models (14) and (15)

calculated over rolling windows of size m = 100 into the components Aτ,P , BP , and UP , as

described in the Section 3. Negative MSFE differences imply that the economic model (14) is

better than the benchmark model (15).14 In addition to the relative forecasting performance

of one-step ahead forecasts, we also consider one-year-ahead forecasts in a direct multistep

forecasting exercise. More specifically, we consider the following “economic” and benchmark

models:

Model 1 - multistep: yt+h = α(L)xt + ϵ1,t+h (16)

13Except for Germany, whose time series is heavily affected by the adoption of the Euro.
14The size of the window is chosen to strike a balance between the size of the out-of-sample period (P )

and the total sample size in the databases of the various countries. To make the results comparable across
countries, we keep the size of the window constant across countries and set it equal to m = 100, which results
in a sequence of 186 out-of-sample rolling loss differentials for each country.
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where yt+h is the h period ahead rate of growth of the exchange rate at time t, defined by

yt+h = [ln(St+h/St)] /h, and xt is as defined previously. α(L) is a lag polynomial, such that

α(L)xt =
∑p

j=1 αjxt−j+1, where p is selected recursively by BIC, and ϵ1,t+h is the h-step

ahead error term. The benchmark model is the random walk:

Model 2 - multistep: yt+h = ε2,t+h, (17)

where ε2,t+h is the h-step ahead error term. We focus on one-year ahead forecasts by setting

h = 12 months.

Figure 3 plots the estimated values of Aτ,P , BP and UP for the decomposition in Proposi-

tion (3) for one-step ahead forecasts (eqs. 14, 15) and Figure 4 plots the same decomposition

for multi-step ahead forecasts (eqs. 16, 17). In addition, the first column of Table 6 reports

the test statistics for assessing the significance of each of the three components, Γ
(A)
P ,Γ

(B)
P

and Γ
(U)
P , as well as the Diebold and Mariano (1995) and West (1996) test, labeled “DMW”.

Overall, according to the DMW test, there is almost no evidence that economic models

forecast exchange rates significantly better than the random walk benchmark. This is the

well-known “Meese and Rogoff puzzle”. It is interesting, however, to look at our decomposi-

tion to understand the causes of the poor forecasting ability of the economic models. Figures

3 and 4 show empirical evidence of time variation in Aτ,P , signaling possible instability in the

relative forecasting performance of the models. Table 6 shows that such instability is statisti-

cally insignificant for one-month ahead forecasts across the countries. Instabilities, however,

become statistically significant for one-year ahead forecasts in some countries. The figures

uncover that the economic model was forecasting significantly better than the benchmark

in the late 2000s for Canada and in the early 1990s for the U.K. For the one-month ahead

forecasts, the BP component is mostly positive, except for the case of Germany. In addition,

the test statistic indicates that the component is statistically significant for Switzerland,

Canada, Japan and Germany. We conclude that the lack of out-of-sample predictive ability
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is related to lack of in-sample predictive content. For Germany, even though the predictive

content is statistically significant, it is misleading (since BP < 0). For the U.K. instead, the

bad forecasting performance of the economic model is attributed to over-fit. As we move to

one-year ahead forecasts, the evidence of predictive content becomes weaker. Interestingly,

for Canada, there is statistical evidence in favor of predictive content when we forecast with

the large economic model. We conclude that lack of predictive content is the major expla-

nation for the lack of one-month ahead forecasting ability of the economic models, whereas

time variation is mainly responsible for the lack of one-year ahead forecasting ability.

7 Conclusions

This paper proposes a new decomposition of measures of relative out-of-sample predictive

ability into uncorrelated components related to instabilities, in-sample fit, and over-fitting.

In addition, the paper provides tests for assessing the significance of each of the compo-

nents. The methods proposed in this paper have the advantage of identifying the sources

of a model’s superior forecasting performance and might provide valuable information for

improving forecasting models.

Acknowledgments

We thank the editors, two anonymous referees, and participants of the 2008 Midwest Econo-

metrics Group, the EMSG at Duke University, and the 2010 NBER-NSF Time Series Confer-

ence for comments. Barbara Rossi gratefully acknowledges support by NSF grant 0647627.

The views expressed in this paper are those of the authors. No responsibility should be

attributed to the Bank of Canada.

24



Appendix A. Additional Theoretical Results

This Appendix contains theoretical propositions that extend the recursive window estimation

results to situations where π ̸= 0 or D ̸= 0.

Proposition 5 (Asymptotic Results for the General Recursive Window Case ) For

every k ∈ [0, 1] , under Assumption 2:

(a) If π = 0 then

1√
P

R+[kP ]∑
t=R

Ω−1/2
rec

[
l̂t+h − E (lt+h)

]
⇒ W (k) ,

where Ωrec = Sll; and

(b) If S is p.d. then

1√
P

R+[kP ]∑
t=R

Ω (k)−1/2
rec

[
l̂t+h − E (lt+h)

]
⇒ W (k) ,

where

Ω (k)rec ≡
(

I D
)( Sll ΥSlhJ

′

ΥJS ′
lh 2ΥJShhJ

′

)(
I

D′

)
, (18)

and W (.) is a (2× 1) standard vector Brownian Motion, Υ ≡ 1− ln(1+kπ)
kπ

, kπ ∈ [0, π] .

Comment to Proposition 5. Upon mild strengthening of the assumptions on ht as in

Andrews (1991), a consistent estimate of Ω (k)rec can be obtained by

Ω̂ (k)rec =
(

I D̂
)( Ŝll ΥŜlhĴ

′

ΥĴ Ŝ ′
lh 2ΥĴ ŜhhĴ

′

)(
I

D̂ ′

)
(19)(

Ŝll Ŝlh

Ŝhl Ŝhh

)
=

q(P )−1∑
i=−q(P )+1

(1− |i/q(P )|)P−1

T∑
t=R

(
ςt+h − P−1

T∑
t=R

ςt+h

)2

,

where ςt+h = (l̂t+h, h
′
t)

′, D̂ = P−1
∑T

t=R
∂lt+h

∂θ
|θ=θ̂t,R

, Ĵ = JT , and q(P ) is a bandwidth that

grows with P (Newey and West, 1987).

Proposition 6 (The Decomposition: General Expanding Window Estimation ) Let

Assumptions 2,3,4 hold, λ ∈ [µ, 1], Ω (λ)
−1/2
(i,j),rec denote the (i-th,j-th) element of Ω (λ)−1/2

rec ,
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defined in eq. 19, and for τ = [λP ]:

1

m
[
R+τ−1∑
t=R

Ω (λ)
−1/2
(1,1),rec L̂t+h −

R+τ−m−1∑
t=R

Ω (λ− µ)
−1/2
(1,1),rec L̂t+h] =

[
Ãτ,P − E(Ãτ,P )

]
+
[
B̃P − E(B̃P )

]
+
[
ŨP − E(ŨP )

]
, for τ = m,m+ 1, ..., P, (20)

where

Ãτ,P ≡ 1

m
[
R+τ−1∑
t=R

Ω (λ)
−1/2
(1,1),rec L̂t+h −

R+τ−m−1∑
t=R

Ω (λ− µ)
−1/2
(1,1),rec L̂t+h]−

1

P

T∑
t=R

Ω (1)
−1/2
(1,1),rec L̂t+h,

B̃P ≡ Ω (1)
−1/2
(1,1),rec BP , and ŨP ≡ Ω (1)

−1/2
(1,1),rec UP . Under Assumption 5, where Aτ,P ≡

E(Ãτ,P ), Ãτ,P , B̃P , ŨP are asymptotically uncorrelated, and provide a decomposition of the

rolling average (standardized) out-of-sample measure of forecasting performance, eq. (20).

Comment. Note that, when D = 0, so that estimation uncertainty is not relevant, (20) is

the same as (10) because Ω (λ)rec does not depend on λ.

Proposition 7 (Significance Tests: Expanding Window Estimation ) Let Assump-

tions 2,3,4 hold, σ̂2
A = Ω̂ (1)(1,1),rec , σ̂2

A,λ = Ω̂ (λ)(1,1),rec , σ̂2
B = Φ2

P Ω̂ (1)(2,2),rec , for Ω̂rec

defined in eq.(19), σ̂2
U = σ̂2

A − σ̂2
B, Ãτ,P ≡ 1

m
[
R+τ−1∑
t=R

σ̂−1
A,λL̂t+h −

R+τ−m−1∑
t=R

σ̂−1
A,λ−µL̂t+h] −

1
P

T∑
t=R

σ̂−1
A L̂t+h, B̃P ≡ σ̂−1

A BP , ŨP ≡ σ̂−1
A UP , and the tests be defined as:

Γ
(A)
P ≡ sup

τ=m,...,P
|Ãτ,P |,

Γ
(B)
P ≡

√
P (σ̂A/σ̂B) B̃P

Γ
(U)
P ≡

√
P (σ̂A/σ̂U) ŨP .

Then: (i) Under H0,A, where Aτ,P ≡ E(Ãτ,P ) : Γ
(A)
P ⇒ supλ∈[µ,1]

∣∣∣ 1µ [W1 (λ)−W1 (λ− µ)]−W1 (1)
∣∣∣,

where τ = [λP ] , m = [µP ] and W1 (·) is a standard univariate Brownian motion. The criti-

cal values for significance level α are ± kα, where kα solves (12). Table 1 reports the critical

values kα.

(ii) Under H0,B : Γ
(B)
P ⇒ N (0, 1); under H0,U : Γ

(U)
P ⇒ N (0, 1).
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Appendix B. Proofs

This Appendix contains the proofs of the theoretical results in the paper.

Lemma 1 (The Mean Value Expansion) Under Assumption 2, we have

1√
P

R+[kP ]∑
t=R

l̂t+h =
1√
P

R+[kP ]∑
t=R

lt+h +D
1√
P

R+[kP ]∑
t=R

JHt + op (1) . (21)

Proof of Lemma 1. Consider the following mean value expansion of l̂t+h = l̂t+h(θ̂t,R)

around θ∗:

l̂t+h

(
θ̂t,R

)
= lt+h +Dt+h

(
θ̂t,R − θ∗

)
+ rt+h, (22)

where the i-th element of rt+h is: 0.5
(
θ̂t,R − θ∗

)′ (
∂2li,t+h(θ̃t,R)

∂θ∂θ′

)(
θ̂t,R − θ∗

)
and θ̃t,R is an

intermediate point between θ̂t,R and θ∗. From (22) we have

1√
P

R+[kP ]∑
t=R

l̂t+h =
1√
P

R+[kP ]∑
t=R

lt+h +
1√
P

R+[kP ]∑
t=R

Dt+h

(
θ̂t,R − θ∗

)
+

1√
P

R+[kP ]∑
t=R

rt+h.

Eq. (21) follows from:

(a) 1√
P

R+[kP ]∑
t=R

rt+h = op (1) and

(b) 1√
P

R+[kP ]∑
t=R

Dt+h

(
θ̂t,R − θ∗

)
= D 1√

P

R+[kP ]∑
t=R

JHt.

(a) follows from Assumption 2(b) and Equation 4.1(b) in West (1996, p. 1081). To prove

(b), note that by Assumption 2(c)

1√
P

R+[kP ]∑
t=R

Dt+h

(
θ̂t,R − θ∗

)
= 1√

P

R+[kP ]∑
t=R

Dt+hJtHt =
1√
P

R+[kP ]∑
t=R

DJHt +

1√
P

R+[kP ]∑
t=R

(Dt+h −D) JHt +
1√
P

R+[kP ]∑
t=R

D (Jt − J)Ht +
1√
P

R+[kP ]∑
t=R

(Dt+h −D) (Jt − J)Ht.

We have that, in the last equality: (i) the second term is op (1) as
1√
P

R+[kP ]∑
t=R

(Dt+h −D) JHt

=

√
[kP ]
√
P

( 1√
[kP ]

R+[kP ]∑
t=R

Dt+h − D)Ht →
p

0 by Assumption 2(d),

√
[kP ]
√
P

= O (1) and Lemma

A4(a) in West (1996). (ii) Similar arguments show that the third and fourth terms are op (1)

by Lemma A4(b,c) in West (1996).
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Lemma 2 (Joint Asymptotic Variance of lt+h and Ht) For every k ∈ [0, 1] ,

lim
T→∞

V ar




1√
P

R+[kP ]∑
t=R

lt+h

1√
P

R+[kP ]∑
t=R

JtHt


 = k

(
Sll 0

0 0

)
if π = 0, and

lim
T→∞

V ar




1√
P

R+[kP ]∑
t=R

lt+h

1√
P

R+[kP ]∑
t=R

JtHt


 = k

(
Sll ΥSlhJ

′

ΥJS ′
lh 2ΥJShhJ

′

)
if π > 0.

Proof of Lemma 2. We have,

(i) lim
T→∞

V ar

 1√
P

R+[kP ]∑
t=R

J Ht

 =

0 if π = 0

k(2ΥJShhJ
′) if π > 0,

where π = 0 case follows from Lemma A5 in West (1996). The result for π > 0 case follows

from lim
T→∞

V ar

(
1√
[kP ]

R+[kP ]∑
t=R

Ht

)
= 2

[
1− (kπ)−1 ln (1 + kπ)

]
Shh = 2ΥShh, together with

West (1996, Lemmas A2(b), A5) with P being replaced by R + [kP ] and [kP ] /P →
T→∞

k.

Using similar arguments,

(ii) V ar

 1√
P

R+[kP ]∑
t=R

lt+h

 =
[kP ]

P
V ar

 1√
[kP ]

R+[kP ]∑
t=R

lt+h

 →
T→∞

kSll;

(iii) Cov

(
1√
P

R+[kP ]∑
t=R

lt+h,
1√
P

R+[kP ]∑
t=R

Ht

)
= [kP ]

P
Cov

(
1√
[kP ]

R+[kP ]∑
t=R

lt+h,
1√
[kP ]

R+[kP ]∑
t=R

Ht

)

→
T→∞

0 if π = 0 by West (1994)

kΥSlh if π > 0 by Lemma A5 in West (1994)
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Lemma 3 (Asymptotic Variance of l̂t+h) For k ∈ [0, 1] , and Ω (k)rec defined in eq. (19):

(b) lim
T→∞

V ar

 1√
P

R+[kP ]∑
t=R

l̂t+h

 = kSll if π = 0, and

(b) lim
T→∞

V ar

 1√
P

R+[kP ]∑
t=R

l̂t+h

 = kΩ (k)rec if π > 0.

Proof of Lemma 3. From Lemma 1, we have

1√
P

R+[kP ]∑
t=R

[
l̂t+h − E (lt+h)

]
=

1√
P

R+[kP ]∑
t=R

[lt+h − E (lt+h)] +D
1√
P

R+[kP ]∑
t=R

J Ht + op (1) .

That the variance is as indicated above follows from Lemma 2 and lim
T→∞

V ar

(
1√
P

R+[kP ]∑
t=R

l̂t+h

)

=
(

I D
)

lim
T→∞

V ar


1√
P

R+[kP ]∑
t=R

lt+h

1√
P

R+[kP ]∑
t=R

JH t


(

I

D′

)
, which equals kΩ (k)rec if π > 0, and

equals kSll if π = 0.

Proof of Proposition 1. Since Zt+h,R is a measurable function of θ̂t,R, which includes

only a finite (R) number of lags (leads) of {yt, xt}, and {yt, xt} are mixing, Zt+h,R is also

mixing, of the same size as {yt, xt}. Then WP ⇒ W by Corollary 4.2 in Wooldridge and

White (1988).

Proof of Propositions 2 and 5. Let mt+h(k) = Ω (k)−1/2
rec [l̂t+h − E (lt+h)] if π > 0

(where Ω (k)rec is positive definite since S is positive definite), and mt+h(k) = S
−1/2
ll [l̂t+h −

E (lt+h)] if π = 0 orD = 0. That 1√
P

R+[kP ]∑
t=R

mt+h(k) =
1√
P

[kP ]∑
s=1

ms+R+h(k) satisfies Assumption

D.3 in Wooldridge and White (1989) follows from Lemma 3. The limiting variance also

follows from Lemma 3, and is full rank by Assumption 2(d). Weak convergence of the

standardized partial sum process then follows from Corollary 4.2 in Wooldridge and White

(1989). The convergence can be converted to uniform convergence as follows: first, an

argument similar to that in Andrews (1993, p. 849, lines 4-18) ensures that Assumption (i)

in Lemma A4 in Andrews (1993) holds; then, Corollary 3.1 in Wooldridge and White (1989)

can be used to show that mt+h(k) satisfies assumption (ii) in Lemma A4 in Andrews (1993).

Uniform convergence then follows by Lemma A4 in Andrews (1993).
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Proof of Proposition 3. Let W (.) = [W1 (.) ,W2 (.)]
′ denote a two-dimensional vector

of independent standard univariate Brownian Motions.

(a) For the fixed rolling window estimation, let Ω(i,j),roll denote the i-th row and j-th column

element of Ωroll, and let B (.) ≡ Ω
1/2
rollW (.). Note that

1

m

R+τ−1∑
t=R+τ−m

L̂t+h =

(
1

m

R+τ−1∑
t=R+τ−m

L̂t+h −
1

P

T∑
t=R

L̂t+h

)
+

1

P

T∑
t=R

L̂t+h, for τ = m, .., P,

where, from Proposition 1 and Assumptions 3,5: 1√
P

T∑
t=R

(L̂t+h − Lt+h) ⇒ B1 (1) , and

√
PAτ,P =

P

m

1√
P

R+τ−1∑
t=R+τ−m

(L̂t+h−Lt+h)−
1√
P

T∑
t=R

(L̂t+h−Lt+h) ⇒
1

µ
[B1 (λ)− B1 (λ− µ)]−B1 (1) ,

for µ defined in Assumption 3. By construction, BP and UP are asymptotically uncorrelated

under either H0,B or H0,U ,
15 and 1

P

T∑
t=R

L̂t+h = BP + UP .

Note that BP = β̂ 1
P

T∑
t=R

L̂t =
(
β̂ − β

)
1
P

T∑
t=R

L̂t + β 1
P

T∑
t=R

L̂t. Thus, under H0,B:

BP −BP =
(
β̂ − β

) 1

P

T∑
t=R

L̂t + β

(
1

P

T∑
t=R

L̂t

)

=

(
1

P

T∑
t=R

L̂2
t

)−1(
1

P

T∑
t=R

L̂t

[
L̂t+h − βL̂t

])( 1

P

T∑
t=R

L̂t

)
+ β

(
1

P

T∑
t=R

L̂t

)

= ΦP

(
1

P

T∑
t=R

L̂tL̂t+h

)
, (23)

where the last equality follows from the fact that H0,B : β 1
P

T∑
t=R

Lt = 0 and Assumption

4(b) imply β = 0, and ΦP ≡ ( 1
P

T∑
t=R

L̂t)(
1
P

T∑
t=R

L̂2
t )

−1. Note that UP = 1
P

T∑
t=R

L̂t+h − BP , thus

15Let L = [LR, ...,LT ]
′
, L = [LR+h, ..., LT+h]

′
, PP = L (L′L)−1 L′, MP ≡ I −PP , B = PPL, U = MPL.

Then, BP = P−1ι′B and UP = P−1ι′U , where ι is a (P × 1) vector of ones. Note that, under either H0,B

or H0,U , either BP or UP have zero mean. Also note that Cov (BP , UP ) = E (B′
PUP ) = P−2E

(
B′ι ι′U

)
= P−1E

(
B′U

)
= P−1E

(
L′
t+hPPMPLt+h

)
= 0. Therefore, BP and UP are asymptotically uncorrelated.
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UP − UP = 1
P

T∑
t=R

(
L̂t+h − Lt+h

)
−
(
BP −BP

)
. Then, from Assumptions 1,5, we have

P 1/2

 Aτ,P − Aτ,P

BP −BP

UP − UP

 =


P
m

1√
P

R+τ−1∑
t=R+τ−m

(
L̂t+h − Lt+h

)
− 1√

P

T∑
t=R

(
L̂t+h − Lt+h

)
[
0 ΦP

1 −ΦP

]
1√
P

T∑
t=R

(
L̂t+h − Lt+h

)
1√
P

T∑
t=R

L̂tL̂t+h





⇒

 1 0 0

0 0 Φ

0 1 −Φ




1
µ
[B1 (λ)− B1 (λ− µ)]− B1 (1)

B1 (1)

B2 (1)

 , (24)

where 1
P

T∑
t=R

L̂t →
p

lim
T→∞

1
P

T∑
t=R

Lt ̸= 0 by Assumption 4(b), and ΦP →
p

Φ by Assumption 1,

where Φ ≡
(

lim
T→∞

1
P

T∑
t=R

Lt

)(
lim
T→∞

1
P

T∑
t=R

EL̂2
t

)−1

. Note that

Cov

(
1

µ
[B1 (λ)− B1 (λ− µ)]− B1 (1) ,ΦB2 (1)

)
= Cov

(
1

µ
B1 (λ) ,ΦB2 (1)

)
− Cov

(
1

µ
B1 (λ− µ) ,ΦB2 (1)

)
− Ω(1,2),rollΦ

= Ω(1,2),rollΦ

(
λ

µ
− λ− µ

µ
− 1

)
= 0.

It follows that [Aτ,P −Aτ,P ] and [BP −BP ] are asymptotically uncorrelated. A similar proof

shows that [Aτ,P − Aτ,P ] and [UP − UP ] are asymptotically uncorrelated:

Cov

(
1

µ
[B1 (λ)− B1 (λ− µ)]− B1 (1) ,B1 (1)− ΦB2 (1)

)
= Cov

(
1

µ
B1 (λ) ,B1 (1)

)
− Cov

(
1

µ
B1 (λ− µ) ,B1 (1)

)
− Ω(1,1),roll

−Cov

(
1

µ
B1 (λ) ,ΦB2 (1)

)
+ Cov

(
1

µ
B1 (λ− µ) ,ΦB2 (1)

)
+ Ω(1,2),rollΦ

= Ω(1,1),roll

(
λ

µ
− λ− µ

µ
− 1

)
− Ω(1,2),rollΦ

(
λ

µ
− λ− µ

µ
− 1

)
= 0.

Thus, supτ=m,..,P [Aτ,P − Aτ,P ] is asymptotically uncorrelated with BP −BP and UP − UP .

(b) For the recursive window estimation, the results follows directly from the proof of Propo-

sition (6) by noting that, when D = 0, Ω (λ)rec is independent of λ. Thus (20) is exactly the
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same as (10).

Proof of Proposition 4. (a) For the fixed rolling window estimation case, we first show

that σ̂2
A, σ̂

2
B, σ̂

2
U are consistent estimators for σ2

A, σ
2
B, σ

2
U . From (23), it follows that σ2

B ≡

lim
T→∞

V ar
(
P 1/2BP

)
= lim

T→∞
Φ2

PV ar( 1√
P

T∑
t=R

L̂tL̂t+h) = Φ2 lim
T→∞

V ar( 1√
P

T∑
t=R

L̂tL̂t+h), which can

be consistently estimated by σ̂2
B = Φ2

P Ω̂(2,2),roll. Also, the proof of Proposition 3 ensures that,

under either H0,B or H0,U , BP and UP are uncorrelated. Then, σ̂2
U = σ̂2

A − σ̂2
B is a consistent

estimate of V ar
(
P 1/2UP

)
. Then, consistency of σ̂2

A, σ̂
2
B, σ̂

2
U follows from standard arguments

(see Newey and West, 1987). Part (i) follows directly from the proof of Proposition 3, eq.

(24). Part (ii) follows from
√
PBP ⇒ σBW2 (1) and thus

√
PBP/σ̂B ⇒ W2 (1) ≡ N (0, 1).

Similar arguments apply for UP .

(b) For the recursive window estimation case, the result follows similarly.

Proof of Proposition 6. Consistent with the definition in the proof of Propositions 2

and 5, let mt+h(k) = Ω (k)−1/2
rec [l̂t+h − E (lt+h)] and Mt+h(k) = Ω (k)

−1/2
(1,1),rec [L̂t+h − Lt+h].

Proposition 5 and Assumptions 3,5, where Aτ,P ≡ E(Ãτ,P ), imply
P
m

(
1√
P

R+τ−1∑
t=R

mt+h (λ)− 1√
P

R+τ−m−1∑
t=R

mt+h (λ− µ)

)
− 1√

P

T∑
t=R

mt+h (1)

1√
P

T∑
t=R

mt+h (1)


⇒

[
1
µ
(W (λ)−W (λ− µ))−W (1)

W (1)

]
.

Assumptions 4(b),5, where Aτ,P ≡ E(Ãτ,P ), and eqs. (20), (23), (24) imply:

P 1/2

 Ãτ,P − E(Ãτ,P )

B̃P − E(B̃P )

ŨP − E(ŨP )

 =


P

m
√
P

(
R+τ−1∑
t=R

Mt+h (λ)−
R+τ−m−1∑

t=R

Mt+h (λ− µ)

)
− 1√

P

T∑
t=R

Mt+h (1)

Ω (1)
−1/2
(1,1),rec

(
0 ΦP

1 −ΦP

)
1√
P

T∑
t=R

(L̂t+h − Lt+h)

1√
P

T∑
t=R

L̂tL̂t+h





⇒

 1 0 0

0 0 Φ

0 1 −Φ




1
µ

[
Ω (λ)

−1/2
(1,1),rec B1 (λ)−Ω (λ− µ)

−1/2
(1,1),rec B1 (λ− µ)

]
−Ω (1)

−1/2
(1,1),rec B1 (1)

Ω (1)
−1/2
(1,1),rec B1 (1)

Ω (1)
−1/2
(1,1),rec B2 (1)

 .

since ΦP ≡ ( 1
P

T∑
t=R

L̂t)(
1
P

T∑
t=R

L̂2
t )

−1 →
p
Φ ≡

(
lim
T→∞

1
P

T∑
t=R

Lt

)(
lim
T→∞

1
P

T∑
t=R

EL̂2
t

)−1

.
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Also, note that

Cov{ 1
µ

[
Ω(λ)

−1/2
(1,1),recB1(λ)−Ω(λ− µ)

−1/2
(1,1),recB1(λ− µ)

]
−Ω(1)

−1/2
(1,1),recB1(1),ΦΩ(1)

−1/2
(1,1),recB2(1)} =

Cov{ 1
µ
W1(λ),ΦΩ(1)

−1/2
(1,1),recΩ(1)

−1/2
(2,2),recW2(1)} − Cov{ 1

µ
W1(λ− µ)ΦΩ(1)

−1/2
(1,1),recΩ(1)

−1/2
(2,2),recW2(1)}

−Cov{W1(1),ΦΩ(1)
−1/2
(1,1),recΩ(1)

−1/2
(2,2),recW2(1)} = Φ(

λ

µ
−λ− µ

µ
−1)Ω(λ)(1,2),recΩ(λ)

−1/2
(1,1),recΩ(λ)

−1/2
(2,2),rec.

It follows that Ãτ,P −E(Ãτ,P ) is asymptotically uncorrelated with B̃P −E(B̃P ). Similar

arguments to those in the proof of Proposition 3 establish that Ãτ,P −E(Ãτ,P ) is asymptot-

ically uncorrelated with ŨP − E(ŨP ).

Proof of Proposition 7. The proof follows from Proposition 6 and arguments similar

to those in the proof of Proposition 4.
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Appendix C. Data Description

1. Exchange rates. We use the bilateral end-of-period exchange rates for the Swiss franc (CHF),

Canadian dollar (CAD), and Japanese yen (JPY). We use the bilateral end-of-period exchange

rates for the German mark (DEM - EUR) using the fixed conversion factor adjusted euro

rates after 1999. The conversion factor is 1.95583 marks per euro. For the British pound

(GBP), we use the U.S. dollar per British pound rate to construct the British pound to

U.S. dollar rate. The series are taken from IFS and correspond to lines “146..AE.ZF...”

for CHF, “112..AG.ZF...” for BP, “156..AE.ZF...” for CAD, “158..AE.ZF...” for JPY and

“134..AE.ZF...” for DEM, and “163..AE.ZF...” for the EUR.

2. Money supply. The money supply data for U.S., Japan, and Germany are measured in

seasonally adjusted values of M1 (IFS line items 11159MACZF..., 15859MACZF..., and

13459MACZF... accordingly). The seasonally adjusted value for the M1 money supply

for the Euro Area is taken from the Eurostat and used as a value for Germany after 1999.

The money supply for Canada is the seasonally adjusted value of the Narrow Money (M1)

Index from the OECD Main Economic Indicators (MEI). Money supply for UK is measured

in the seasonally adjusted series of the Average Total Sterling notes taken from the Bank

of England. We use the IFS line item “14634...ZF...” as a money supply value for Switzer-

land. The latter is not seasonally adjusted and we seasonally adjust the data using monthly

dummies.

3. Industrial production. We use the seasonally adjusted value of the industrial production

index taken from IFS and it corresponds to the line items “11166..CZF...”, “14666..BZF...”,

“11266..CZF...”, “15666..CZF...”, “15866..CZF...”, and “13466..CZF...” for the U.S., Switzer-

land, United Kingdom, Canada, Japan, and Germany correspondingly.

4. Unemployment rate. The unemployment rate corresponds to the seasonally adjusted value of

the “Harmonised Unemployment Rate” taken from the OECD Main Economic Indicators for

all countries except Germany. For Germany we use the value from Datastream (mnemonic

WGUN%TOTQ) that covers the unemployment rate of West Germany only over time.

5. Interest rates. The interest rates are taken from IFS and correspond to line items “11160B..ZF...”,

“14660B..ZF...”, “11260B..ZF...”, “15660B..ZF...”, “15860B..ZF...”, and “13460B..ZF...” for

the U.S., Switzerland, United Kingdom, Canada, Japan, and Germany correspondingly.

6. Commodity prices. The average crude oil price is taken from IFS line item “00176AAZZF...”.

Country-specific “Total, all commodities” index for Canada is from CANSIM database.
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Tables and Figures

Table 1. Critical Values for the Γ
(A)
P Test

µ α : 0.10 0.05 0.025 0.01 µ α : 0.10 0.05 0.025 0.01

0.10 9.844 10.496 11.094 11.858 0.55 2.449 2.700 2.913 3.175

0.15 7.510 8.087 8.612 9.197 0.60 2.196 2.412 2.615 2.842

0.20 6.122 6.609 7.026 7.542 0.65 1.958 2.153 2.343 2.550

0.25 5.141 5.594 5.992 6.528 0.70 1.720 1.900 2.060 2.259

0.30 4.449 4.842 5.182 5.612 0.75 1.503 1.655 1.804 1.961

0.35 3.855 4.212 4.554 4.941 0.80 1.305 1.446 1.575 1.719

0.40 3.405 3.738 4.035 4.376 0.85 1.075 1.192 1.290 1.408

0.45 3.034 3.333 3.602 3.935 0.90 0.853 0.952 1.027 1.131

0.50 2.729 2.984 3.226 3.514

Note. The table reports critical values kα for the test statistic Γ
(A)
P at significance levels

α = 0.10, 0.05, 0.025, 0.01.

Table 2. DGP 1: Size Results

Panel A. IID Panel B. Serial Corr.

R P Γ
(A)
P Γ

(B)
P Γ

(U)
P Γ

(A)
P Γ

(B)
P Γ

(U)
P

20 150 0.02 0.07 0.03 0.02 0.08 0.04

200 0.01 0.06 0.03 0.01 0.08 0.04

300 0.01 0.05 0.03 0.01 0.07 0.03

50 150 0.03 0.07 0.03 0.02 0.08 0.04

200 0.02 0.06 0.04 0.01 0.08 0.04

300 0.03 0.06 0.03 0.02 0.08 0.03

100 150 0.04 0.06 0.05 0.03 0.09 0.04

200 0.03 0.07 0.04 0.02 0.08 0.04

300 0.03 0.06 0.04 0.03 0.07 0.04

200 150 0.04 0.06 0.06 0.03 0.08 0.05

200 0.03 0.06 0.05 0.03 0.08 0.05

300 0.04 0.06 0.04 0.04 0.07 0.04

Note. The table reports empirical rejection frequencies of the test statistics Γ
(A)
P , Γ

(B)
P ,

Γ
(U)
P for various window and sample sizes (see DGP 1 in Section 5 for details). m = 100.

Nominal size is 0.05.
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Table 3. DGP 2: Time Variation Case

Panel A. IID Panel B. Serial Corr.

b Γ
(A)
P Γ

(B)
P Γ

(U)
P Γ

(A)
P Γ

(B)
P Γ

(U)
P

0 0.07 0.06 0.04 0.06 0.07 0.04

0.1 0.06 0.06 0.05 0.06 0.07 0.04

0.2 0.07 0.07 0.05 0.06 0.07 0.05

0.3 0.08 0.07 0.06 0.06 0.07 0.05

0.4 0.10 0.07 0.06 0.06 0.07 0.06

0.5 0.14 0.07 0.07 0.07 0.08 0.06

0.6 0.19 0.07 0.07 0.09 0.08 0.06

0.7 0.23 0.07 0.08 0.10 0.08 0.06

0.8 0.28 0.07 0.08 0.13 0.08 0.07

0.9 0.35 0.07 0.09 0.15 0.08 0.07

0.1 0.41 0.07 0.09 0.18 0.08 0.07

Note. The table reports empirical rejection frequencies of the test statistics Γ
(A)
P , Γ

(B)
P ,

Γ
(U)
P in the presence of time variation in the relative performance (see DGP 2 in Section 5).

R = 100, P = 300, m = 60. The nominal size is 0.05.

Table 4. DGP 3: Stronger Predictive Content Case

Panel A. IID Panel B. Serial Corr.

b Γ
(A)
P Γ

(B)
P Γ

(U)
P Γ

(A)
P Γ

(B)
P Γ

(U)
P

0 0.03 0.06 0.04 0.03 0.07 0.04

0.1 0.05 0.06 0.11 0.04 0.07 0.05

0.2 0.05 0.07 0.58 0.04 0.07 0.20

0.3 0.04 0.10 0.94 0.04 0.07 0.50

0.4 0.04 0.16 1 0.04 0.08 0.79

0.5 0.04 0.29 1 0.04 0.11 0.95

0.6 0.04 0.47 1 0.04 0.14 0.99

0.7 0.04 0.68 1 0.04 0.18 1

0.8 0.04 0.86 1 0.04 0.24 1

0.9 0.04 0.96 1 0.04 0.32 1

1 0.04 0.99 1 0.04 0.40 1

Note. The table reports empirical rejection frequencies of the test statistics Γ
(A)
P , Γ

(B)
P ,

Γ
(U)
P in the case of an increasingly stronger predictive content of the explanatory variable

(see DGP 3 in Section 5). R = 100, P = 300, m = 100. Nominal size is 0.05.
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Table 5. DGP 4: Over-fitting Case

Panel A. IID Panel B. Serial Corr.

p Γ
(A)
P Γ

(B)
P Γ

(U)
P Γ

(A)
P Γ

(B)
P Γ

(U)
P

0 0.03 0.06 0.04 0.03 0.07 0.04

1 0.03 0.06 0.08 0.02 0.06 0.08

2 0.02 0.06 0.15 0.02 0.07 0.14

5 0.02 0.07 0.41 0.01 0.07 0.42

10 0.01 0.08 0.80 0.01 0.09 0.80

15 0.01 0.12 0.95 0.01 0.13 0.95

20 0.02 0.17 1 0.01 0.19 0.99

25 0.01 0.24 1 0.01 0.27 1

30 0.02 0.34 1 0.02 0.37 1

35 0.02 0.46 1 0.02 0.49 1

40 0.02 0.60 1 0.02 0.63 1

Note. The table reports empirical rejection frequencies of the test statistics Γ
(A)
P , Γ

(B)
P ,

Γ
(U)
P in the presence of over-fitting (see DGP 4 in Section 5), where p is the number of

redundant regressors included in the largest model. R = 100, P = 200, m = 100. Nominal

size is 0.05.
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Table 6. Empirical Results

Countries: One-month Ahead One-year Ahead Multistep

Switzerland DMW 1.110 1.420

Γ
(A)
P 2.375 3.800

Γ
(B)
P 2.704* -0.658

Γ
(U)
P 1.077 1.788

United Kingdom DMW 2.095* 2.593*

Γ
(A)
P 3.166 4.595*

Γ
(B)
P 0.600 1.362

Γ
(U)
P 2.074* 2.283*

Canada DMW 0.335 -0.831

Γ
(A)
P 3.923 4.908*

Γ
(B)
P 2.594* -2.167*

Γ
(U)
P 0.279 1.029

Japan DMW 1.409 0.677

Γ
(A)
P 2.541 3.222

Γ
(B)
P 2.034* -1.861

Γ
(U)
P 1.251 1.677

Germany DMW 1.909 1.290

Γ
(A)
P 2.188 1.969

Γ
(B)
P -2.247* 0.109

Γ
(U)
P 1.945 1.285

Commodity Prices DMW -1.116 1.420

Γ
(A)
P 2.842 2.300

Γ
(B)
P -2.241* -1.459

Γ
(U)
P -1.352 1.656

Note. The table reports the estimated values of the statistics Γ
(A)
P , Γ

(B)
P , Γ

(U)
P . DMW

denotes the Diebold and Mariano (1995) and West (1996) test statistic. “∗” denotes signif-

icance at the 5% level. Significance of the DMW test follows from Giacomini and White’s

(2006) critical values. The results are based on window sizes R = m = 100.
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Figure 1: Out-of-Sample Fit in Data: MSFEModel/MSERW , P = 200 - non-overlapping
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Figure 2: Out-of-Sample Fit in Data: MSFEModel/MSERW , P = 200 - overlapping
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Notes: The figures report the MSFE of one month ahead exchange rate forecasts for each country

from the economic model relative to a random walk benchmark as a function of the estimation

window (R). Figure 1 considers the first P = 200 out-of-sample periods following the estimation

period, while figure 2 considers the last P = 200 out-of-sample periods which are overlapping for

the estimation windows of different size.
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Figure 3: Decomposition for One-step Ahead Forecast.

Figure 4: Decomposition for One-year Ahead Direct Multistep Forecast.

Notes: The figures report Aτ,P , Bp, and Up and 5% significance bands for Aτ,P . The results are

based on window sizes R = m = 100.
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